- #1
flux!
- 34
- 0
I'am trying to prove
[tex]\int e^{ix}cos(x) dx= \frac{1}{2}x-\frac{1}{4}ie^{2ix}[/tex]
Wolfram tells so http://integrals.wolfram.com/index.jsp?expr=e^(i*x)cos(x)&random=false
But I am stuck in obtaining the first term:
My step typically involved integration by parts:
let [itex]u=e^{ix}cos(x)[/itex] and [itex]dv=dx[/itex]
so:
[tex]du=-e^{ix}sin(x)dx+icos(x)e^{ix}[/tex][tex]du=ie^{ix}(sin(x)+cos(x))dx[/tex][tex]du=ie^{2ix}dx[/tex]
the other one is just: [itex]v=x[/itex]
then:
[tex]\int e^{ix}cos(x) dx=xe^{ix}cos(x)-i\int xe^{2ix}dx[/tex]
We will again do another integration by parts for the second term, so we let [itex]u=x[/itex] and [itex]dv=e^{2ix}dx[/itex] then solving further, we obtain:
[tex]\int xe^{2ix}dx=\frac{-i}{2}xe^{2ix}+\frac{1}{4}e^{2ix}[/tex]
plugging it back to the original problem, then doing simple distribution, we will obtain:
[tex]\int e^{ix}cos(x) dx=xe^{ix}cos(x)-i\left ( \frac{-i}{2}xe^{2ix}+\frac{1}{4}e^{2ix}\right )[/tex]
[tex]\int e^{ix}cos(x) dx=xe^{ix}cos(x)- \frac{1}{2}xe^{2ix}-\frac{1}{4}ie^{2ix}[/tex]
notice that we have proved the 2nd term, but the other half is badly away from what the Integration Table and Tools says:
[tex]\int e^{ix}cos(x) dx= \frac{1}{2}x-\frac{1}{4}ie^{2ix}[/tex]
What have I gone wrong?
[tex]\int e^{ix}cos(x) dx= \frac{1}{2}x-\frac{1}{4}ie^{2ix}[/tex]
Wolfram tells so http://integrals.wolfram.com/index.jsp?expr=e^(i*x)cos(x)&random=false
But I am stuck in obtaining the first term:
My step typically involved integration by parts:
let [itex]u=e^{ix}cos(x)[/itex] and [itex]dv=dx[/itex]
so:
[tex]du=-e^{ix}sin(x)dx+icos(x)e^{ix}[/tex][tex]du=ie^{ix}(sin(x)+cos(x))dx[/tex][tex]du=ie^{2ix}dx[/tex]
the other one is just: [itex]v=x[/itex]
then:
[tex]\int e^{ix}cos(x) dx=xe^{ix}cos(x)-i\int xe^{2ix}dx[/tex]
We will again do another integration by parts for the second term, so we let [itex]u=x[/itex] and [itex]dv=e^{2ix}dx[/itex] then solving further, we obtain:
[tex]\int xe^{2ix}dx=\frac{-i}{2}xe^{2ix}+\frac{1}{4}e^{2ix}[/tex]
plugging it back to the original problem, then doing simple distribution, we will obtain:
[tex]\int e^{ix}cos(x) dx=xe^{ix}cos(x)-i\left ( \frac{-i}{2}xe^{2ix}+\frac{1}{4}e^{2ix}\right )[/tex]
[tex]\int e^{ix}cos(x) dx=xe^{ix}cos(x)- \frac{1}{2}xe^{2ix}-\frac{1}{4}ie^{2ix}[/tex]
notice that we have proved the 2nd term, but the other half is badly away from what the Integration Table and Tools says:
[tex]\int e^{ix}cos(x) dx= \frac{1}{2}x-\frac{1}{4}ie^{2ix}[/tex]
What have I gone wrong?