- #1
Laney5
- 5
- 0
Im looking for a general solution to the following equation but i can't seem to get an answer.
3xdy = (ln(y[tex]^{6}[/tex]) - 6lnx)ydx
I've got this far anyway..
[tex]\frac{3x}{y}[/tex] dy = (ln(y[tex]^{6}[/tex])-ln(x[tex]^{6}[/tex])) dx
[tex]\frac{dy}{dx}[/tex] = [tex]\frac{y}{3x}[/tex] . 6ln[tex]\frac{y}{x}[/tex]
[tex]\frac{dy}{dx}[/tex] = [tex]\frac{y}{x}[/tex] . 2ln[tex]\frac{y}{x}[/tex]
Let z = [tex]\frac{y}{x}[/tex]
[tex]\frac{dz}{dx}[/tex] = (x[tex]\frac{dy}{dx}[/tex] - y) / x[tex]^{2}[/tex]
[tex]\frac{dz}{dx}[/tex] = [tex]\frac{1}{x}[/tex]([tex]\frac{y}{x}[/tex] . 2ln[tex]\frac{y}{x}[/tex]) - [tex]\frac{y}{x^2}[/tex]
z = [tex]\frac{y}{x}[/tex] gives
[tex]\frac{dz}{dx}[/tex] = [tex]\frac{1}{x}[/tex](2zlnz) - [tex]\frac{z}{x}[/tex]
[tex]\frac{dz}{dx}[/tex] = [tex]\frac{1}{x}[/tex](2zlnz-z)
[tex]\frac{dz}{2zlnz - z}[/tex] = [tex]\frac{1}{x}[/tex]dx
now I am stuck...??
3xdy = (ln(y[tex]^{6}[/tex]) - 6lnx)ydx
I've got this far anyway..
[tex]\frac{3x}{y}[/tex] dy = (ln(y[tex]^{6}[/tex])-ln(x[tex]^{6}[/tex])) dx
[tex]\frac{dy}{dx}[/tex] = [tex]\frac{y}{3x}[/tex] . 6ln[tex]\frac{y}{x}[/tex]
[tex]\frac{dy}{dx}[/tex] = [tex]\frac{y}{x}[/tex] . 2ln[tex]\frac{y}{x}[/tex]
Let z = [tex]\frac{y}{x}[/tex]
[tex]\frac{dz}{dx}[/tex] = (x[tex]\frac{dy}{dx}[/tex] - y) / x[tex]^{2}[/tex]
[tex]\frac{dz}{dx}[/tex] = [tex]\frac{1}{x}[/tex]([tex]\frac{y}{x}[/tex] . 2ln[tex]\frac{y}{x}[/tex]) - [tex]\frac{y}{x^2}[/tex]
z = [tex]\frac{y}{x}[/tex] gives
[tex]\frac{dz}{dx}[/tex] = [tex]\frac{1}{x}[/tex](2zlnz) - [tex]\frac{z}{x}[/tex]
[tex]\frac{dz}{dx}[/tex] = [tex]\frac{1}{x}[/tex](2zlnz-z)
[tex]\frac{dz}{2zlnz - z}[/tex] = [tex]\frac{1}{x}[/tex]dx
now I am stuck...??