- #1
TranscendArcu
- 285
- 0
Homework Statement
The Attempt at a Solution
Let [itex](x,y,z)[/itex] be arbitrary. We write, [itex](x,y,z) = a(1,0,1) + b(0,1,0) + c(0,1,1) [/itex] for [itex]a,b,c \in R [/itex]. From this,
[itex](x,y,z) = (a,0,a) + (0,b,0) + (0,c,c) = (a,b+c,a+c)[/itex]. However, [itex](a,b+c,a+c)[/itex] can generate all of [itex]R^3[/itex] for appropriately chosen [itex]a,b,c[/itex]. Thus, the subspace in question is all of [itex]R^3[/itex].
Am I doing this right?