Sum Infinity Express: Rational Number Solution

In summary: S=\sum_{n=1}^{\infty} \frac{1}{n}\ \sum _{m=1}^{\infty} \frac{1}{m\ (m+n+ 2)}\ (1)$$\displaystyle S=\sum_{n=1}^{\infty} \frac{1}{n}\ \sum _{m=1}^{\infty} \frac1n\frac1{m(m+n+2)}$
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Express $\displaystyle \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \dfrac{1}{m^2n+mn^2+2mn}$ as a rational number.
 
Mathematics news on Phys.org
  • #2
anemone said:
Express $\displaystyle \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \dfrac{1}{m^2n+mn^2+2mn}$ as a rational number.

[sp]Writing the sum in aslight different form You have...$\displaystyle S=\sum_{n=1}^{\infty} \frac{1}{n}\ \sum _{m=1}^{\infty} \frac{1}{m\ (m+n+ 2)}\ (1)$In... http://mathhelpboards.com/discrete-mathematics-set-theory-logic-15/difference-equation-tutorial-draft-part-i-426.html#post2494... it has been demonstrated that is... $\displaystyle\sum_{m=1}^{\infty} \frac{1}{m (m+n)} = \frac{H_{n}}{n}\ (2)$... where $\displaystyle H_{n} = \sum_{k=1}^{n} \frac{1}{k}$ is the harmonic number of order n.In this case is... $\displaystyle S=\sum_{n=1}^{\infty} \frac{H_{n+2}}{n\ (n+2)}\ (3)$

Using the identity $\displaystyle H_{n+2} = H_{n} + \frac{1}{n+1} + \frac{1}{n+2}$ You arrive to write...

$\displaystyle S= \sum_{n=1}^{\infty} \frac{H_{n}}{n\ (n+2)} + \sum_{n=1}^{\infty} \frac{1}{n\ (n+1)\ (n+2)} + \sum_{n=1}^{\infty} \frac{1}{n\ (n+2)^{2}}\ (4)$

The first term of (4) can be found applying the general formula...

$\displaystyle \sum_{n=1}^{\infty} \frac{H_{n}}{n\ (n+a)} = \frac{1}{2\ a}\ \{2\ \zeta(2) + H_{a-1}^{2} + H_{a-1}^{(2)} \}\ (5)$

... where $\displaystyle H_{a-1}^{(2)} = \sum_{k=1}^{a-1} \frac{1}{k^{2}}$. For a=2 is...

$\displaystyle \sum_{n=1}^{\infty} \frac{H_{n}}{n\ (n+2)} = \frac{1+\zeta(2)}{2}\ (6)$

The other terms are more comfortable...

$\displaystyle \sum_{n=1}^{\infty} \frac{1}{n\ (n+1)\ (n+2)} = \frac{1}{4}\ (7)$

$\displaystyle \sum_{n=1}^{\infty} \frac{1}{n\ (n+2)^{2}} = 1 - \frac{\zeta(2)}{2}\ (8)$

... so that the final result is $S= \frac{7}{4}$ [/sp]

Kind regards

$\chi$ $\sigma$
 
  • #3
Slight variation on chisigma's proof:
[sp]$$\begin{aligned}\sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \frac{1}{m^2n+mn^2+2mn} &= \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \frac1n\frac1{m(m+n+2)} \\ &= \sum_{n=1}^{\infty} \frac1{n(n+2)} \sum_{m=1}^{\infty}\Bigl(\frac1m - \frac1{m+n+2}\Bigr) \qquad\text{(partial fractions)} \\ &= \sum_{n=1}^{\infty} \frac1{n(n+2)} \sum_{m=1}^{n+2}\frac1m \qquad\text{(telescoping sum)} \\ &= \sum_{n=1}^{\infty} \frac12\Bigl(\frac1n - \frac1{n+2}\Bigr) \sum_{m=1}^{n+2}\frac1m \qquad\text{(partial fractions)} \\ &= \frac12\biggl(1 + \frac34 + \sum_{n=1}^{\infty}\frac1n\Bigl(\frac1{n+1} + \frac1{n+2}\Bigr)\biggr) \qquad\text{(partially telescoping sum)*} \\ &= \frac78 + \frac12\sum_{n=1}^{\infty}\Bigl(\frac1n - \frac1{n+1} + \frac12\Bigl(\frac1n - \frac1{n+2}\Bigr)\Bigr) \qquad\text{(partial fractions)} \\ &= \frac78 + \frac12\Bigl(1 + \frac34\Bigr) = \frac74 \qquad\text{(telescoping sums)}.\end{aligned}$$

* The idea of the "partially telescoping sum" is that the $n$th term in the sum \(\displaystyle \sum_{n=1}^{\infty} \Bigl(\frac1n - \frac1{n+2}\Bigr) \sum_{m=1}^{n+2}\frac1m\) contains the product \(\displaystyle \frac1n \sum_{m=1}^{n+2}\frac1m\). Two terms earlier in the sum (assuming that $n\geqslant3$), there is the product \(\displaystyle -\frac1n \sum_{m=1}^{n}\frac1m\). When those two expressions are added, most of the terms in the "$m$" summations cancel, and we are just left with \(\displaystyle \frac1n\Bigl(\frac1{n+1} + \frac1{n+2}\Bigr).\)[/sp]
 
  • #4
Hey chisigma and Opalg,(Wave)

Thanks for participating and showing the two neat and smart solutions.

A solution that I saw somewhere online:

$\sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \dfrac{1}{m^2n+mn^2+2mn}$

$= \sum_{n=1}^{\infty}\dfrac{1}{n}\sum_{m=1}^{\infty} \dfrac{1}{m(m+n+2)}$

$=\sum_{n=1}^{\infty}\dfrac{1}{n(n+2)}\left[\left(1-\dfrac{1}{n+3} \right)+\left(\dfrac{1}{2}-\dfrac{1}{n+4} \right)+\left(\dfrac{1}{3}-\dfrac{1}{n+5}+\cdots \right) \right]$

$=\sum_{n=1}^{\infty}\dfrac{1}{n(n+2)}\left[1+\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{n+2} \right]$

$=\dfrac{1}{2}\sum_{n=1}^{\infty} \left(\dfrac{1}{n}-\dfrac{1}{n+2} \right)\left(1+\dfrac{1}{2}+\cdots+\dfrac{1}{n+2} \right)$

$=\dfrac{1}{2}\left[ \left(1-\dfrac{1}{3} \right)\left(1+\dfrac{1}{2}+\dfrac{1}{3} \right)+\left(\dfrac{1}{2} -\dfrac{1}{3} \right)\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{3} -\dfrac{1}{5} \right)\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\right)+\cdots\right]$

$=\dfrac{1}{2}\left[\left(1+\dfrac{1}{2}+\dfrac{1}{3}\right)+ \dfrac{1}{2}\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)+\dfrac{1}{3}\left(1+\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{4}\left(1+\dfrac{1}{5}+\dfrac{1}{6}\right)+\dfrac{1}{5}\left(1+\dfrac{1}{6}+\dfrac{1}{7}\right)+\cdots\right]$

$=\dfrac{1}{2}\left[\dfrac{11}{6}+\dfrac{1}{2}\cdot\dfrac{25}{12}+\left(\dfrac{1}{3(4)}+\dfrac{1}{4(5)}+\dfrac{1}{5(6)}+\cdots \right)+\left(\dfrac{1}{3(5)}+\dfrac{1}{4(6)}+\dfrac{1}{5(7)}+\cdots \right) \right]$

$=\dfrac{1}{2}\left[\dfrac{11}{6}+\dfrac{25}{24}+\left(\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+\left(\dfrac{1}{4}-\dfrac{1}{5}\right)+\cdots\right)+\dfrac{1}{2}\left(\left(\dfrac{1}{3}-\dfrac{1}{5}\right)+\left(\dfrac{1}{4}-\dfrac{1}{6}\right)+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+\cdots\right)\right]
$

$=\dfrac{1}{2}\left[\dfrac{11}{6}+\dfrac{25}{24}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{8}\right]$

$=\dfrac{7}{4}$
 
Last edited:
  • #5


I would like to clarify that the given expression is not a sum of infinite terms, but rather a double sum over two variables, n and m. To obtain a rational number solution, we can use the fact that the given expression can be rewritten as:

$\displaystyle \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \dfrac{1}{mn(m+n+2)}$

We can then use the formula for the sum of a geometric series to write:

$\displaystyle \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \dfrac{1}{mn(m+n+2)} = \sum_{n=1}^{\infty} \dfrac{1}{n} \cdot \sum_{m=1}^{\infty} \dfrac{1}{m(m+n+2)}$

The sum $\sum_{n=1}^{\infty} \dfrac{1}{n}$ is a well-known infinite series that converges to the natural logarithm of 2 (ln 2). The sum $\sum_{m=1}^{\infty} \dfrac{1}{m(m+n+2)}$ can be evaluated using partial fractions to obtain:

$\displaystyle \sum_{m=1}^{\infty} \dfrac{1}{m(m+n+2)} = \dfrac{1}{n+2} \left(\dfrac{1}{n+1} - \dfrac{1}{n+2}\right)$

Substituting this back into our original expression, we get:

$\displaystyle \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \dfrac{1}{mn(m+n+2)} = \ln 2 \cdot \left(\dfrac{1}{2} - \dfrac{1}{3} + \dfrac{1}{4} - \dfrac{1}{5} + ...\right)$

This is an alternating series that converges to ln 2/2. Therefore, the rational number solution to the given expression is simply ln 2/2.
 

FAQ: Sum Infinity Express: Rational Number Solution

What is Sum Infinity Express: Rational Number Solution?

Sum Infinity Express: Rational Number Solution is a mathematical concept that involves adding an infinite number of rational numbers together to find a solution. This concept is often used in calculus and other advanced mathematical fields.

How is Sum Infinity Express: Rational Number Solution different from regular addition?

The main difference between Sum Infinity Express: Rational Number Solution and regular addition is that in regular addition, we are adding a finite number of rational numbers together, while in Sum Infinity Express, we are adding an infinite number of rational numbers. This makes the solution more complex and requires advanced mathematical techniques to solve.

Why is Sum Infinity Express: Rational Number Solution important?

Sum Infinity Express: Rational Number Solution is important because it allows us to find a solution for mathematical problems that involve infinite sums. It also has applications in physics, engineering, and other scientific fields.

How do you solve Sum Infinity Express: Rational Number Solution?

Solving Sum Infinity Express: Rational Number Solution involves using various mathematical techniques such as limits, series, and convergence tests. These techniques help us to find a finite solution for an infinite sum.

Are there any real-world applications of Sum Infinity Express: Rational Number Solution?

Yes, there are many real-world applications of Sum Infinity Express: Rational Number Solution. For example, it can be used to calculate the total resistance of an electrical circuit, or to find the area under a curve in physics and engineering problems. It is also used in economics, finance, and other fields that involve complex mathematical models.

Similar threads

Replies
4
Views
1K
Replies
14
Views
2K
Replies
1
Views
960
Replies
2
Views
2K
Replies
6
Views
1K
Replies
9
Views
1K
Replies
1
Views
855
Back
Top