- #1
Sherlock1
- 38
- 0
Inspired by http://www.mathhelpboards.com/showthread.php?560-integrals thread: By considering the integral $\displaystyle \int_{0}^{\infty} \frac{\ln(1+x^2)}{1+x^2}\;{dx}$ or otherwise,
show that $\displaystyle \sum_{k \ge 0}~\sum_{0 \le j \le k}\frac{(-1)^k}{(2k+3)(j+1)} = \frac{1}{2}\pi\ln(2)-G$ where $G$ is Catalan's constant.
show that $\displaystyle \sum_{k \ge 0}~\sum_{0 \le j \le k}\frac{(-1)^k}{(2k+3)(j+1)} = \frac{1}{2}\pi\ln(2)-G$ where $G$ is Catalan's constant.