- #1
Math Amateur
Gold Member
MHB
- 3,998
- 48
I am trying without success to provide a rigorous proof for the following exercise:
Show that the sum of a rational number and an irrational number is irrational.Can someone please help me with a rigorous solution ...I am working from the following books:
Ethan D. Bloch: The Real Numbers and Real Analysis
and
Derek Goldrei: Classic Set TheoryBoth use a Dedekind Cut approach to the construction of the real numbers (but Goldrei also uses Cauchy Sequences ... )
I am taking the definition of an irrational number as equivalent to an irrational cut as defined by Bloch as follows:https://www.physicsforums.com/attachments/7014To assist those members reading this post I am providing Bloch's definition of a Dedekind Cut plus a Lemma indicating the that there are at least as many of them as there are rational numbers ...https://www.physicsforums.com/attachments/7015Help will be much appreciated ...
Peter
Show that the sum of a rational number and an irrational number is irrational.Can someone please help me with a rigorous solution ...I am working from the following books:
Ethan D. Bloch: The Real Numbers and Real Analysis
and
Derek Goldrei: Classic Set TheoryBoth use a Dedekind Cut approach to the construction of the real numbers (but Goldrei also uses Cauchy Sequences ... )
I am taking the definition of an irrational number as equivalent to an irrational cut as defined by Bloch as follows:https://www.physicsforums.com/attachments/7014To assist those members reading this post I am providing Bloch's definition of a Dedekind Cut plus a Lemma indicating the that there are at least as many of them as there are rational numbers ...https://www.physicsforums.com/attachments/7015Help will be much appreciated ...
Peter