- #1
juantheron
- 247
- 1
If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
jacks said:If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
First hint: $y^2+2y = (y+1)^2 - 1$. So it will be helpful to find $y+1 = 1 + \frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+ \ldots.$jacks said:If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
Opalg said:First hint: $y^2+2y = (y+1)^2 - 1$. So it will be helpful to find $y+1 = 1 + \frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+ \ldots.$
Second hint: This looks like a generalised binomial series. In fact, Newton's generalised binomial theorem states that $$(1+x)^s = 1 + \frac s1x + \frac{s(s-1)}{2!}x^2 + \frac{s(s-1)(s-2)}{3!}x^3 + \ldots$$ (and it converges provided that $|x|<1$). Can you force the series for $1+y$ into that form?
Third hint:$$1+y = 1 + \frac{-\frac32}1\bigl(-\tfrac12\bigr) + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr)}{2!}\bigl(-\tfrac12\bigr)^2 + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr) \bigl(-\frac72\bigr)}{3!}\bigl(-\tfrac12\bigr)^3 + \ldots\,.$$
anemone said:I wish I can give as many thanks as possible to you for this solution, Opalg!:p:)(Wink)
The formula for finding the sum of an infinite series is given by S = a/(1-r), where a is the first term of the series and r is the common ratio.
An infinite series converges when the limit of its partial sums approaches a finite number. It diverges when the limit of its partial sums approaches infinity or does not exist.
Yes, the sum of an infinite series can be negative if the terms of the series alternate between positive and negative values.
An infinite series has an infinite number of terms, while a finite series has a specific number of terms. Additionally, the sum of a finite series can be calculated exactly, while the sum of an infinite series may only be approximated.
The sum of an infinite series is determined by the terms of the series. Specifically, the sum is dependent on the ratio between consecutive terms, with a smaller ratio resulting in a larger sum and a larger ratio resulting in a smaller sum.