Sum of Infinite Series: $y^2+2y$

In summary, Opalg provides a detailed solution for finding the value of $y^2+2y$ given an infinite series. He uses a difference equation and the generalized binomial theorem to arrive at the final answer of $2(\sqrt{8}-1)$. The other members express their gratitude for Opalg's help and mention his expertise and helpfulness.
  • #1
juantheron
247
1
If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
 
Mathematics news on Phys.org
  • #2
Re: infinite series sum

Can you tell us what your efforts have been and where you are stuck? Posting a question without any work does not give our helpers a good place to begin to offer help other than to begin the problem, which you may have already done. I am sure you have tried to work the problem, so show our helpers what your efforts have been. This shows them where you may be going wrong, and how to best help.
 
  • #3
jacks said:
If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $

First we write the series as $\displaystyle y= \sum_{n=1}^{\infty} a_{n}$, where the $a_{n}$ are the solution of the difference equation...

$\displaystyle a_{n+1}= a_{n}\ \frac{2n+3}{4\ (n+1)} = \frac{a_{n}}{2}\ \{1+\frac{1}{2 (n+1)}\},\ a_{0}=1$ (1)

Following the procedure described in...

http://www.mathhelpboards.com/f15/difference-equation-tutorial-draft-part-i-426/

... You find the solution of (1)...

$\displaystyle a_{n}= 2^{1 -n} \prod_{k=1}^{n} (1+\frac{1}{2 k})$ (2)

Now if You 'remember' the formula...

$\displaystyle \prod_{k=1}^{n} (1+\frac{1}{2 k}) = \frac{2}{\sqrt{\pi}}\ \frac{\Gamma(n + \frac{3}{2})}{\Gamma(n+1)}$ (3)

... You arrive to write...

$\displaystyle y = \frac{2}{\sqrt{\pi}}\ \sum_{n=1}^{\infty} \frac{\Gamma(n + \frac{3}{2})}{\Gamma(n+1)}\ 2^{-n}$ (4)

... and 'remembering' also that is...

$\displaystyle \sum_{n=0}^{\infty} \frac{\Gamma(n+\frac{k}{2})}{\Gamma(n+1)}\ x^{n} = \frac{\Gamma(\frac{k}{2})}{(\sqrt{1-x})^{k}}$ (5)

... and... $\displaystyle \Gamma(\frac{3}{2})= \frac{\sqrt{\pi}}{2}$ (6)

... You obtain finally...

$\displaystyle y=\frac{4}{\sqrt{\pi}} \{\frac{\Gamma(\frac{3}{2})}{(\sqrt{(\frac{1}{2}})^{3}}-\Gamma (\frac{3}{2})\}= 2\ (\sqrt{8}-1)$ (7)

Of course the problem is not trivial and I'm a little surprised that it has been proposed in the Pre-Algebra forum...

Kind regards

$\chi$ $\sigma$
 
Last edited:
  • #4
jacks said:
If $\displaystyle y=\frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+...\infty$. Then $y^2+2y = $
First hint: $y^2+2y = (y+1)^2 - 1$. So it will be helpful to find $y+1 = 1 + \frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+ \ldots.$

Second hint: This looks like a generalised binomial series. In fact, Newton's generalised binomial theorem states that $$(1+x)^s = 1 + \frac s1x + \frac{s(s-1)}{2!}x^2 + \frac{s(s-1)(s-2)}{3!}x^3 + \ldots$$ (and it converges provided that $|x|<1$). Can you force the series for $1+y$ into that form?

Third hint:
$$1+y = 1 + \frac{-\frac32}1\bigl(-\tfrac12\bigr) + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr)}{2!}\bigl(-\tfrac12\bigr)^2 + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr) \bigl(-\frac72\bigr)}{3!}\bigl(-\tfrac12\bigr)^3 + \ldots\,.$$
 
  • #5
Opalg said:
First hint: $y^2+2y = (y+1)^2 - 1$. So it will be helpful to find $y+1 = 1 + \frac{3}{4}+\frac{3*5}{4*8}+\frac{3*5*7}{4*8*12}+ \ldots.$

Second hint: This looks like a generalised binomial series. In fact, Newton's generalised binomial theorem states that $$(1+x)^s = 1 + \frac s1x + \frac{s(s-1)}{2!}x^2 + \frac{s(s-1)(s-2)}{3!}x^3 + \ldots$$ (and it converges provided that $|x|<1$). Can you force the series for $1+y$ into that form?

Third hint:
$$1+y = 1 + \frac{-\frac32}1\bigl(-\tfrac12\bigr) + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr)}{2!}\bigl(-\tfrac12\bigr)^2 + \frac{\bigl(-\frac32\bigr) \bigl(-\frac52\bigr) \bigl(-\frac72\bigr)}{3!}\bigl(-\tfrac12\bigr)^3 + \ldots\,.$$

I wish I can give as many thanks as possible to you for this solution, Opalg!:p:)(Wink)
 
  • #6
anemone said:
I wish I can give as many thanks as possible to you for this solution, Opalg!:p:)(Wink)

Yes, Opalg is certainly one of our best helpers, both in the depth of his knowledge, and also in the lucidity of his posts. We are most fortunate that he is a member here. (Yes)

It is nice when our members take the time to comment on this, and while our helpers do what they do not for accolades, but for the desire to simply be helpful, such comments are certainly appreciated. (Cool)
 

FAQ: Sum of Infinite Series: $y^2+2y$

What is the formula for finding the sum of an infinite series?

The formula for finding the sum of an infinite series is given by S = a/(1-r), where a is the first term of the series and r is the common ratio.

How do you determine if an infinite series converges or diverges?

An infinite series converges when the limit of its partial sums approaches a finite number. It diverges when the limit of its partial sums approaches infinity or does not exist.

Can the sum of an infinite series be negative?

Yes, the sum of an infinite series can be negative if the terms of the series alternate between positive and negative values.

What is the difference between an infinite series and a finite series?

An infinite series has an infinite number of terms, while a finite series has a specific number of terms. Additionally, the sum of a finite series can be calculated exactly, while the sum of an infinite series may only be approximated.

How is the sum of an infinite series related to its terms?

The sum of an infinite series is determined by the terms of the series. Specifically, the sum is dependent on the ratio between consecutive terms, with a smaller ratio resulting in a larger sum and a larger ratio resulting in a smaller sum.

Similar threads

Replies
7
Views
2K
Replies
3
Views
2K
Replies
20
Views
2K
Replies
1
Views
2K
Replies
3
Views
1K
Replies
6
Views
2K
Replies
6
Views
2K
Back
Top