- #1
happyparticle
- 465
- 21
Summary:: summation of the components of a complex vector
Hi,
In my textbook I have
##\widetilde{\vec{E_t}} = (\widetilde{\vec{E_i}} \cdot \hat{e_p}) \hat{e_p}##
##\widetilde{\vec{E_t}} = \sum_j( (\widetilde{\vec{E_{ij}}} \cdot {e_{p_j}}*) \hat{e_p}##
For ##\hat{e_p} = \hat{x}##
##\widetilde{\vec{E_{0i}}} = (E_{0x} \hat{x} \pm E_{0y} \hat{y} )e^{i\theta}##
Thus, ##\widetilde{\vec{E_0t}} = (\sum E_{0ij} e_{pj}*) \hat{e_p}##
and then
##\widetilde{\vec{E_0t}} = E_0 cos \theta \hat{x} + E_0 sin^* \theta (0) ##
I don't see how to get the last line. This is what I think.
##\widetilde{\vec{E_0t}} = [(E_{0x}e^{i \theta}] \hat{x}## where, ##e_{p}* = x - iy = 1## because ##\hat{e_p} = \hat{x}##
= ## E_{0x} (cos \theta + i sin \theta) \hat{x}##
I tried different way to get the same result, but I'm not sure to fully understand.
Hi,
In my textbook I have
##\widetilde{\vec{E_t}} = (\widetilde{\vec{E_i}} \cdot \hat{e_p}) \hat{e_p}##
##\widetilde{\vec{E_t}} = \sum_j( (\widetilde{\vec{E_{ij}}} \cdot {e_{p_j}}*) \hat{e_p}##
For ##\hat{e_p} = \hat{x}##
##\widetilde{\vec{E_{0i}}} = (E_{0x} \hat{x} \pm E_{0y} \hat{y} )e^{i\theta}##
Thus, ##\widetilde{\vec{E_0t}} = (\sum E_{0ij} e_{pj}*) \hat{e_p}##
and then
##\widetilde{\vec{E_0t}} = E_0 cos \theta \hat{x} + E_0 sin^* \theta (0) ##
I don't see how to get the last line. This is what I think.
##\widetilde{\vec{E_0t}} = [(E_{0x}e^{i \theta}] \hat{x}## where, ##e_{p}* = x - iy = 1## because ##\hat{e_p} = \hat{x}##
= ## E_{0x} (cos \theta + i sin \theta) \hat{x}##
I tried different way to get the same result, but I'm not sure to fully understand.