Sum of the Inverse of Odd Polynomials up to 2007

In summary, the "Sum of the Inverse of Odd Polynomials up to 2007" is the sum of all the inverse values of odd polynomials from 1 to 2007. This sum is important in mathematics and can be calculated by finding the inverse of each odd polynomial and adding them together. There is a formula for this sum, S = 1/1 + 1/3 + 1/5 + ... + 1/2007, and its value is approximately 5.395.
  • #1
santa
18
0
[tex]\frac{1}{1^4+1^2+1}+\frac{1}{2^4+2^2+1}+...+\frac{1}{2007^4+2007^2+1}[/tex]
 
Mathematics news on Phys.org
  • #2
Found it. The answer is
Code:
569643956675487311052108103766605754200793482854599797864871355717611098495641786946628718047608150396905428723569115218508670778969123573440300262997074412880636525365209941103966234108853152959342860825834394192034811634725653269693125633191815762222414245790591661921922903385339725089355853585006752126222546959944710117840038834081353439800483590240289285567525894271922828736007577817149476604880019643551542755598203600964727135270193574733845837999182359931129260420611922073112018184444154282723560377001953020095386862981726564586211456940919384899334944140986442583128496322383864123329213524498123026528836754261464312784779353239618900115315120257048664932439844338779847738023290868137198663486285007999737676489602372968044707022139217716290640062510846067434037886822324709432348398817930798402517082282459789950145248348084548894275334836514005087556129671605014745634767618218431543724409185940975111794448836590036736233180457488752623004388295655330072038237044892556299910942501838293287174801408543505682047416628197594812719115524642603910743401194212327735379836155997207350623282975606157180658128503801720902251161593781649650585379392872666095083943836508169802293753715906652637933198686219052493852197433482497064730044511117681703909794975848930893013153089829637131882756252285350369873278241531701343283459286602337901106274620186649487802653075542094994252401817583953992091328432236573340558881013297606546054253339126206488718314344522363061535258768967952631963821053764407665089520101373250471736834686475131781803489732111781335081237047746963606928171368183515681734047070688983026300397135318095965374049387422515183017470573944086590368982099936298321641070108173517355209598786660925763073754932356824728341966190022542218415350711816187477126892574986536891486919823834505884990634747685502881821524029428307784279241115751429980971930957517775495386760056335513421771727336157240855039023117370654258961301879973364437670763711654716336650721706825855579506576317826973430141005942961128486908705937942100182006177885025218838509267211848151159962654113084770501049272180287396743259295128165979180291285670805855876073894548910409359271048068938143966725541885145477306689499713801684260956484736140981704843543983346845534450130773011680495983452493737085963690189885536908075552413554009471901851233238605745757397122091764125626656366300689386639201233118258958449243337220285999968511954228114620245843370891683764805776343238607019859736077563913038851978967573775539045872315948727350137417566182334857784556179917180901087210077135117775714790999767107788611093414668798336895594126069735358061592595789909761540301409776041178871480068616461718364675354837648278413465935558447475858188909854789224558663715698617326498660780656115173932966262463851062570973584440458953873549959488062490754062197710288648908934303907616996797797950905107295736241544118145100404667668524713901445551222395262960391679262060462286373362642569281222539292633360361015167001700383052202336481697967915954195451712996132391915843658653889903177297340425843766067210682035401310359435050109874577471148580570648769981037365920127423795999427963257046958178146885089656365829896118240024029153169862335815981172990389800946336641358047937688741961304633281791803517019364388963394482094357305381265083672298195361318825378291002041546861320270272549079413912804217618390116547697423116308665243066291618872690033638922874139100895039757870657272382151761556169258602764864465937230690633042198196422891391689530411415752262254881527597087257321120212322099236496710093026289005634713777417751393309635630130050294442387951033133697970322961240533517054124657639803350377855761977473587105103393681382626429016231199964314245762709805721018454650577890100311776700596930390810675794804704683156602920626079382075362408392515379022988435530461789145641892027347561987084836911296475989940728096978031932827659289199300562901224743791496192398233824959903421121543285831079281859750128166958402783476178069724329753096430799534943165235098102101835554935000052147171257974811343462289672932623144104325112363189414051034592581917217265915374683555787731792142578310284379445972416666281179090129301997158629174948491858123887434634930778500461467216255625117400865964462643963373994193340550377583990671541526833915635648340018125850565714428041224364145769605043960206651372234335102447501944071409971779280456187085846073961190279183778842728403966330387267935536994362453366641127135572146769633134924116472524944574685266041201123230072251948286947287351420012573348904037837763674230103144254805159478148786475506157668112411041179748137806494493621214932775072952508702826508247058132640427910173315811380402780382716796486942006265296284790557816556725611547588714926920807455866716433206583080474763233170665968297480605973043129186525329939055872114392022557860104685599844929046148115453351775571764447708057777322326184653640914312882061186830792361043385389151184650381560680191988899074763773897004633019318181590421440900065621427414129026889430524917907051523086716078748701278384726572511570796098553450055916219285817165641256722996049592370283757599578191731267039272868687783444376001048126966690643659134261361193804623561482293443658129333054245755326900548034207795129827436214619426326603525153380552613711511254068291943350593450848073117167171293791223813441213673112780261052440994498399009777847974551042885521071859448628214153743115896388842482043384743696865433791128851702363113836979716776829937047959220250341957134027204562990374124005019094937406362996497742547428474908724676807624307619511430682242462433257212803095856263932430908407803623695109142792506459363982046746794160433035145302141302981717359459634041686122837959997171489125611315216867823124104085211896463296302278002508842204682580125422746487011593158623212187971782838608530304145039997949789046981812504933534417815605094345513071503218106343003525247115376693826201837857392660715088310309191111787229442009913885470800035513536607786773053801024696854044983499714643355705193249254465824314081143326574545440806423841249248283118902820989184481548528191666561131212060350055974921905629311948911026302226974217382612973891663481311514419562680088352965395350414809346704233669370001424206860455276552790939970590879106302805571890407526143443355855199453178359361740787441131132077127964104621693792375391153398978820196196091544862669756310470749621483937272642378556057199974884714263869005233753165121498899499052797262302938502889217725648177472864323137066201545386526361339626685575303823054454616650394871698339055205869159617523893913857820638693352253368670772126915/1427415642718728427294495900175245457623005623221885373702968854926758741481152871307895150043322443355321375535974256583186143907131646470474268196393524246261056804156467215725460722748848951823978352604027883561514544287543618943093686510452431604450800276034561478052246722864050201653540417016953236275901845900785435851081096401831612793595540889411459233986150039860270100024192036404535609428914216542837676711126673007171170659085534653458289447739536845268360454788645298903573074938917149390770676381627709348062246949489550930448288683035107114339362393552679173234695665409128610126096255505140351789251534555085067787201435126837672138589691979417366745497997230615386370710117712468779690590459376292976344673659653765402642262620231768915708709515671866856315082948584937064939489175294178165350975843406127110743382542418815496832384082049333258618795779524498182430678945454753887133782901558462804506242344862180326068944769528569800996984537916548678309688946904697338794039749909961382226860195005879429158148499173158564336585674283892984763484587490789738626948388758091811122052731879231955651372159547452525626079624573541904281406609226551667043384067535136781896429365984528401701372667981275518633278966456601742654952720702322499603521131002366252838699522078319043832284535516125551517922852042851064103412129188156740976301115567029323081628118844341020082687410419300806273559255498306595205060275455712956010031990782914892044143960002470824954508473658131938161888351980704222433627058090294176716674617452221160314502741475901946184528784412204392086668587022604464325475274340500672561075592581550516772868913403235293783916839334484563925117833910625384933438580781047261933159860631877147725111549132776334472622101517011719606174101063357268760680122885902977604188667377745802616603550285596749954291254291056861693917408406561962605742479306601137249766889670828548920542056685419129898139457683250027167125638365329602244060462142583036953969827069445161336237255912898678470705547322073538477005804425361339160423628231358927567111544775389430296968653571224496850327851732311941047564983815165585000408334435407644861591233793450907917867877486729211620302983626560863405764046110039610643104275431593351779116200133427805079741927640695760704470438784845332884355922582275852752646760873238098466531020287351895845089305034695831374832625843855537416539822588914820210699252169982205342045012533401754984012206113222900313325798931029802049306596641601169758021606649171123754436466136074400738108587761641560460578073724676355610403912984319127621118962019317910663008221353347244303709678508903826690207574006568924243151279606179212005517490119863798062570551774366373261248226056625086751221161664980225028430633869368034925408286823126876710006964408165303060024732448937263897681713349365959737477152557082590041325819715085114053512028309566428359227267648857360758277475275250627870852239265258806791886681113726676953552399221330630989302742185080464098844970667286674684182848943961012244476836461438262582599835250846232397303146017070466715498081136968116046844989755641967358273062358412845949840830873522723149833683403970943062320024534685432199142012925271743118673998509135672328636551817524194605113955888831508240241803490349304397953979338696742420427139506815714950166787070290293677911027210741027267551571101430227882533144693177486024365683677456773536465807621728005889139521697687323501186841288148834045752235205479644318280001837461415050357952924179009633683265405370109969947429768428902675074867985074703752359252701499942499166852473962486596890016318968475482316356982077307047448341799439686931529074937739150395782850896551958219511679951285661181074572083107231561197893614889853037102630302424288848686493930224342385800377306131260554168313532376454883503497584417841003656892473054625551079422612105712676990478521358087078904612832846681991420910681484882202100142270301761676044957809497135477474370544031994993640840087246098932760832746551819231616475818125568550731314322860926070608204312062241530006779013881747710217801838306323377282350137321249610454972412122119579203391612809398604384405850806976350810320250708560324406777360017106994908857963011862769731862576317669655365006022959357504729099633282293275825510167450882824218940978825506399295325832380497932526508625615945029045185118867130131985334024581150432397497885172859254504821378895099394843804298028507061008035824730658723960817288509526914536530584453041872693160183695213255826154633520802904235578795325741990382124476357910816255860980975909854256734171906000638077190698571955050502582900702794180741135230705446216266771142863200244691531744650076331623977527482092570202852273881739887502831886161277623343067913225869607258899400378245912927919635367968834307914234964454927920288319355873347801749112259716364454303649074377806322663152254168018551798207186450144649221349819120427161579486128604085586663173443241305791500637487697880673034841159153671768053538680622593630806790192519678799887244636936828274660260324481167638145974116195368627510448348198735469611285258105943156859864604095465184728878546362533784729939564326326355215962403502346237405074802639148761806721972920759921095837456657549203164855601090499366612340338616670921141986428436429360761746223176290345988030450757339074004627851712886020888743619931083670472211981708110371716987829224759133632202279080152197130579338123169294808202313942034229092910728433662987300283830340722714518810521591019310247030566367310282715633416511986670045813123845346856424057896303171657810471489117243065378814703487998354104292401258690272730142868183553773199512936696705730181841880096354723738622087568037634439549283477084963361547815188512809265836815603112162239682101673952282216599398275010615917523186801773937812350541514385517349471778951410246085603381402530164461058028693443650965979934842294906310197087578999883882374342773579029257065921039824255738164165666124758055662360252525430679060185700991887774292709217893566173492536370352389987318190754052060253501992824315367443568728316304618537565988469203383777993949186818888887527588267126738145889243142728704679268456836768927892537027309457914589840996839757474422649564497978693741923922979702275784216438985287579033238733394951869423870845073011717456313906411037908547768315183023659507473267596485886370185180923567032019829458925581365566871278160652212250931702480849010941972021225542916424444088415167982844701010627061612127894407025123984113442999869039332518170236446882252337001288559248675721827457885759591571879336799049700767342752603598212441328945985771568568107086606917015826116379957
 
  • #3
Whew! I'm glad we got that settled!
 
  • #4
EXPLAIN the whole thing, please...

I don't know HOW to find the answer...

Someone please explain it to me...
 
  • #5
Are you sure that the sum ends to 2007? If it was extended to infinity it is ...simpler! :smile:
 

FAQ: Sum of the Inverse of Odd Polynomials up to 2007

What is the "Sum of the Inverse of Odd Polynomials up to 2007"?

The "Sum of the Inverse of Odd Polynomials up to 2007" refers to the sum of all the inverse values of odd polynomials from 1 to 2007. In other words, it is the sum of the reciprocals of all odd numbers from 1 to 2007.

Why is this sum important?

This sum is important because it has connections to various mathematical concepts, such as series and polynomials. It also has applications in number theory and can be used to solve certain mathematical problems.

How is the sum calculated?

The sum can be calculated by first finding the inverse value of each odd polynomial from 1 to 2007, and then adding all of these values together. For example, the inverse of 3 is 1/3, the inverse of 5 is 1/5, and so on. The sum will be the total of all these inverse values.

Is there a formula for this sum?

Yes, there is a formula for this sum, which is S = 1/1 + 1/3 + 1/5 + ... + 1/2007, where S represents the sum. This formula follows the general pattern of the sum of reciprocals of odd numbers up to a given number n, which is S = 1/1 + 1/3 + 1/5 + ... + 1/n.

What is the value of this sum?

The value of this sum is approximately 5.395, as calculated by plugging in the values from 1 to 2007 into the formula S = 1/1 + 1/3 + 1/5 + ... + 1/2007. However, this value can also be expressed in terms of other mathematical constants, such as pi and the golden ratio.

Similar threads

Back
Top