- #1
santa
- 18
- 0
[tex]\frac{1}{1^4+1^2+1}+\frac{1}{2^4+2^2+1}+...+\frac{1}{2007^4+2007^2+1}[/tex]
569643956675487311052108103766605754200793482854599797864871355717611098495641786946628718047608150396905428723569115218508670778969123573440300262997074412880636525365209941103966234108853152959342860825834394192034811634725653269693125633191815762222414245790591661921922903385339725089355853585006752126222546959944710117840038834081353439800483590240289285567525894271922828736007577817149476604880019643551542755598203600964727135270193574733845837999182359931129260420611922073112018184444154282723560377001953020095386862981726564586211456940919384899334944140986442583128496322383864123329213524498123026528836754261464312784779353239618900115315120257048664932439844338779847738023290868137198663486285007999737676489602372968044707022139217716290640062510846067434037886822324709432348398817930798402517082282459789950145248348084548894275334836514005087556129671605014745634767618218431543724409185940975111794448836590036736233180457488752623004388295655330072038237044892556299910942501838293287174801408543505682047416628197594812719115524642603910743401194212327735379836155997207350623282975606157180658128503801720902251161593781649650585379392872666095083943836508169802293753715906652637933198686219052493852197433482497064730044511117681703909794975848930893013153089829637131882756252285350369873278241531701343283459286602337901106274620186649487802653075542094994252401817583953992091328432236573340558881013297606546054253339126206488718314344522363061535258768967952631963821053764407665089520101373250471736834686475131781803489732111781335081237047746963606928171368183515681734047070688983026300397135318095965374049387422515183017470573944086590368982099936298321641070108173517355209598786660925763073754932356824728341966190022542218415350711816187477126892574986536891486919823834505884990634747685502881821524029428307784279241115751429980971930957517775495386760056335513421771727336157240855039023117370654258961301879973364437670763711654716336650721706825855579506576317826973430141005942961128486908705937942100182006177885025218838509267211848151159962654113084770501049272180287396743259295128165979180291285670805855876073894548910409359271048068938143966725541885145477306689499713801684260956484736140981704843543983346845534450130773011680495983452493737085963690189885536908075552413554009471901851233238605745757397122091764125626656366300689386639201233118258958449243337220285999968511954228114620245843370891683764805776343238607019859736077563913038851978967573775539045872315948727350137417566182334857784556179917180901087210077135117775714790999767107788611093414668798336895594126069735358061592595789909761540301409776041178871480068616461718364675354837648278413465935558447475858188909854789224558663715698617326498660780656115173932966262463851062570973584440458953873549959488062490754062197710288648908934303907616996797797950905107295736241544118145100404667668524713901445551222395262960391679262060462286373362642569281222539292633360361015167001700383052202336481697967915954195451712996132391915843658653889903177297340425843766067210682035401310359435050109874577471148580570648769981037365920127423795999427963257046958178146885089656365829896118240024029153169862335815981172990389800946336641358047937688741961304633281791803517019364388963394482094357305381265083672298195361318825378291002041546861320270272549079413912804217618390116547697423116308665243066291618872690033638922874139100895039757870657272382151761556169258602764864465937230690633042198196422891391689530411415752262254881527597087257321120212322099236496710093026289005634713777417751393309635630130050294442387951033133697970322961240533517054124657639803350377855761977473587105103393681382626429016231199964314245762709805721018454650577890100311776700596930390810675794804704683156602920626079382075362408392515379022988435530461789145641892027347561987084836911296475989940728096978031932827659289199300562901224743791496192398233824959903421121543285831079281859750128166958402783476178069724329753096430799534943165235098102101835554935000052147171257974811343462289672932623144104325112363189414051034592581917217265915374683555787731792142578310284379445972416666281179090129301997158629174948491858123887434634930778500461467216255625117400865964462643963373994193340550377583990671541526833915635648340018125850565714428041224364145769605043960206651372234335102447501944071409971779280456187085846073961190279183778842728403966330387267935536994362453366641127135572146769633134924116472524944574685266041201123230072251948286947287351420012573348904037837763674230103144254805159478148786475506157668112411041179748137806494493621214932775072952508702826508247058132640427910173315811380402780382716796486942006265296284790557816556725611547588714926920807455866716433206583080474763233170665968297480605973043129186525329939055872114392022557860104685599844929046148115453351775571764447708057777322326184653640914312882061186830792361043385389151184650381560680191988899074763773897004633019318181590421440900065621427414129026889430524917907051523086716078748701278384726572511570796098553450055916219285817165641256722996049592370283757599578191731267039272868687783444376001048126966690643659134261361193804623561482293443658129333054245755326900548034207795129827436214619426326603525153380552613711511254068291943350593450848073117167171293791223813441213673112780261052440994498399009777847974551042885521071859448628214153743115896388842482043384743696865433791128851702363113836979716776829937047959220250341957134027204562990374124005019094937406362996497742547428474908724676807624307619511430682242462433257212803095856263932430908407803623695109142792506459363982046746794160433035145302141302981717359459634041686122837959997171489125611315216867823124104085211896463296302278002508842204682580125422746487011593158623212187971782838608530304145039997949789046981812504933534417815605094345513071503218106343003525247115376693826201837857392660715088310309191111787229442009913885470800035513536607786773053801024696854044983499714643355705193249254465824314081143326574545440806423841249248283118902820989184481548528191666561131212060350055974921905629311948911026302226974217382612973891663481311514419562680088352965395350414809346704233669370001424206860455276552790939970590879106302805571890407526143443355855199453178359361740787441131132077127964104621693792375391153398978820196196091544862669756310470749621483937272642378556057199974884714263869005233753165121498899499052797262302938502889217725648177472864323137066201545386526361339626685575303823054454616650394871698339055205869159617523893913857820638693352253368670772126915/1427415642718728427294495900175245457623005623221885373702968854926758741481152871307895150043322443355321375535974256583186143907131646470474268196393524246261056804156467215725460722748848951823978352604027883561514544287543618943093686510452431604450800276034561478052246722864050201653540417016953236275901845900785435851081096401831612793595540889411459233986150039860270100024192036404535609428914216542837676711126673007171170659085534653458289447739536845268360454788645298903573074938917149390770676381627709348062246949489550930448288683035107114339362393552679173234695665409128610126096255505140351789251534555085067787201435126837672138589691979417366745497997230615386370710117712468779690590459376292976344673659653765402642262620231768915708709515671866856315082948584937064939489175294178165350975843406127110743382542418815496832384082049333258618795779524498182430678945454753887133782901558462804506242344862180326068944769528569800996984537916548678309688946904697338794039749909961382226860195005879429158148499173158564336585674283892984763484587490789738626948388758091811122052731879231955651372159547452525626079624573541904281406609226551667043384067535136781896429365984528401701372667981275518633278966456601742654952720702322499603521131002366252838699522078319043832284535516125551517922852042851064103412129188156740976301115567029323081628118844341020082687410419300806273559255498306595205060275455712956010031990782914892044143960002470824954508473658131938161888351980704222433627058090294176716674617452221160314502741475901946184528784412204392086668587022604464325475274340500672561075592581550516772868913403235293783916839334484563925117833910625384933438580781047261933159860631877147725111549132776334472622101517011719606174101063357268760680122885902977604188667377745802616603550285596749954291254291056861693917408406561962605742479306601137249766889670828548920542056685419129898139457683250027167125638365329602244060462142583036953969827069445161336237255912898678470705547322073538477005804425361339160423628231358927567111544775389430296968653571224496850327851732311941047564983815165585000408334435407644861591233793450907917867877486729211620302983626560863405764046110039610643104275431593351779116200133427805079741927640695760704470438784845332884355922582275852752646760873238098466531020287351895845089305034695831374832625843855537416539822588914820210699252169982205342045012533401754984012206113222900313325798931029802049306596641601169758021606649171123754436466136074400738108587761641560460578073724676355610403912984319127621118962019317910663008221353347244303709678508903826690207574006568924243151279606179212005517490119863798062570551774366373261248226056625086751221161664980225028430633869368034925408286823126876710006964408165303060024732448937263897681713349365959737477152557082590041325819715085114053512028309566428359227267648857360758277475275250627870852239265258806791886681113726676953552399221330630989302742185080464098844970667286674684182848943961012244476836461438262582599835250846232397303146017070466715498081136968116046844989755641967358273062358412845949840830873522723149833683403970943062320024534685432199142012925271743118673998509135672328636551817524194605113955888831508240241803490349304397953979338696742420427139506815714950166787070290293677911027210741027267551571101430227882533144693177486024365683677456773536465807621728005889139521697687323501186841288148834045752235205479644318280001837461415050357952924179009633683265405370109969947429768428902675074867985074703752359252701499942499166852473962486596890016318968475482316356982077307047448341799439686931529074937739150395782850896551958219511679951285661181074572083107231561197893614889853037102630302424288848686493930224342385800377306131260554168313532376454883503497584417841003656892473054625551079422612105712676990478521358087078904612832846681991420910681484882202100142270301761676044957809497135477474370544031994993640840087246098932760832746551819231616475818125568550731314322860926070608204312062241530006779013881747710217801838306323377282350137321249610454972412122119579203391612809398604384405850806976350810320250708560324406777360017106994908857963011862769731862576317669655365006022959357504729099633282293275825510167450882824218940978825506399295325832380497932526508625615945029045185118867130131985334024581150432397497885172859254504821378895099394843804298028507061008035824730658723960817288509526914536530584453041872693160183695213255826154633520802904235578795325741990382124476357910816255860980975909854256734171906000638077190698571955050502582900702794180741135230705446216266771142863200244691531744650076331623977527482092570202852273881739887502831886161277623343067913225869607258899400378245912927919635367968834307914234964454927920288319355873347801749112259716364454303649074377806322663152254168018551798207186450144649221349819120427161579486128604085586663173443241305791500637487697880673034841159153671768053538680622593630806790192519678799887244636936828274660260324481167638145974116195368627510448348198735469611285258105943156859864604095465184728878546362533784729939564326326355215962403502346237405074802639148761806721972920759921095837456657549203164855601090499366612340338616670921141986428436429360761746223176290345988030450757339074004627851712886020888743619931083670472211981708110371716987829224759133632202279080152197130579338123169294808202313942034229092910728433662987300283830340722714518810521591019310247030566367310282715633416511986670045813123845346856424057896303171657810471489117243065378814703487998354104292401258690272730142868183553773199512936696705730181841880096354723738622087568037634439549283477084963361547815188512809265836815603112162239682101673952282216599398275010615917523186801773937812350541514385517349471778951410246085603381402530164461058028693443650965979934842294906310197087578999883882374342773579029257065921039824255738164165666124758055662360252525430679060185700991887774292709217893566173492536370352389987318190754052060253501992824315367443568728316304618537565988469203383777993949186818888887527588267126738145889243142728704679268456836768927892537027309457914589840996839757474422649564497978693741923922979702275784216438985287579033238733394951869423870845073011717456313906411037908547768315183023659507473267596485886370185180923567032019829458925581365566871278160652212250931702480849010941972021225542916424444088415167982844701010627061612127894407025123984113442999869039332518170236446882252337001288559248675721827457885759591571879336799049700767342752603598212441328945985771568568107086606917015826116379957
The "Sum of the Inverse of Odd Polynomials up to 2007" refers to the sum of all the inverse values of odd polynomials from 1 to 2007. In other words, it is the sum of the reciprocals of all odd numbers from 1 to 2007.
This sum is important because it has connections to various mathematical concepts, such as series and polynomials. It also has applications in number theory and can be used to solve certain mathematical problems.
The sum can be calculated by first finding the inverse value of each odd polynomial from 1 to 2007, and then adding all of these values together. For example, the inverse of 3 is 1/3, the inverse of 5 is 1/5, and so on. The sum will be the total of all these inverse values.
Yes, there is a formula for this sum, which is S = 1/1 + 1/3 + 1/5 + ... + 1/2007, where S represents the sum. This formula follows the general pattern of the sum of reciprocals of odd numbers up to a given number n, which is S = 1/1 + 1/3 + 1/5 + ... + 1/n.
The value of this sum is approximately 5.395, as calculated by plugging in the values from 1 to 2007 into the formula S = 1/1 + 1/3 + 1/5 + ... + 1/2007. However, this value can also be expressed in terms of other mathematical constants, such as pi and the golden ratio.