- #1
DreamWeaver
- 303
- 0
By considering the product of complex numbers:
\(\displaystyle z = (2+i)(3+i)\)
Show that
\(\displaystyle \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{4}\)
\(\displaystyle z = (2+i)(3+i)\)
Show that
\(\displaystyle \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \frac{\pi}{4}\)