- #1
Supernova123
- 12
- 0
Homework Statement
By considering ∑z2n-1, where z=eiθ, show that Σcos(2n-1)θ=sin(2Nθ)/2sinθ. (Σ means summation from 1 to N)
Homework Equations
Just a guess. S=a(1-r^n)/(1-r)
The Attempt at a Solution
I was thinking this but it doesn't seem to work very well. Σz2n-1=Σ(cosθ+isinθ)2n-1=Σ(cos(2n-1)θ+isin(2n-1)θ). Rearranging,
Σcos(2n-1)θ=Σ(cosθ+isinθ)2n-1-Σsin(2n-1)θ
=(cosθ+isinθ)(1-(cosθ+isinθ)2N/(1-(cosθ+isinθ)2) - isinθ(1-(isinθ)2N/(1-(isinθ)^2)