- #1
Niles
- 1,866
- 0
Hi guys
Is the following way of rewriting the sum correct?
[tex]
\sum\limits_{k,k',k'',k'''} {c_k^\dag c_{k'}^{} c_{k''}^\dag c_{k'''}^{} \sum\limits_n {e^{ - ir_n \left( {k - k'} \right)} e^{ - ir_n \left( {k'' - k'''} \right)} } } = \sum\limits_{k,k',k'',k'''} {c_{k + q}^\dag c_{k'}^{} c_{k'' - q}^\dag c_{k'''}^{} \sum\limits_n {e^{ - ir_n \left( {k - k'} \right)} e^{ - ir_n \left( {k'' - k'''} \right)} } }
[/tex]
If yes, then the next step in my calculation is to use that the last sum on the RHS is a delta-function in k,k' and k'',k'''.
Is the following way of rewriting the sum correct?
[tex]
\sum\limits_{k,k',k'',k'''} {c_k^\dag c_{k'}^{} c_{k''}^\dag c_{k'''}^{} \sum\limits_n {e^{ - ir_n \left( {k - k'} \right)} e^{ - ir_n \left( {k'' - k'''} \right)} } } = \sum\limits_{k,k',k'',k'''} {c_{k + q}^\dag c_{k'}^{} c_{k'' - q}^\dag c_{k'''}^{} \sum\limits_n {e^{ - ir_n \left( {k - k'} \right)} e^{ - ir_n \left( {k'' - k'''} \right)} } }
[/tex]
If yes, then the next step in my calculation is to use that the last sum on the RHS is a delta-function in k,k' and k'',k'''.