- #1
Jason4
- 28
- 0
I have:
$Z=X_1+\ldots+X_N$, where:
$X_i\sim_{iid}\,\text{Exponential}(\lambda)$
$N\sim\,\text{Geometric}_1(p)$
For all $i,\,N$ and $X_i$ are independent.
I need to find the probability distribution of $Z$:
$G_N(t)=\frac{(1-p)t}{1-pt}$
$M_X(t)=\frac{\lambda}{\lambda-t}$
$M_Z(z)=G_N(M_X(z))=\frac{(1-p)\left(\frac{\lambda}{\lambda-z}\right)}{1-p\left(\frac{ \lambda}{\lambda-z}\right)}$
$\Rightarrow Z\sim\,\text{Geometric}_1\left(p \frac{ \lambda}{\lambda-z}\right)$
Is that even correct? Should I be looking for $E[Z]$ and $V[Z]$ ?
$Z=X_1+\ldots+X_N$, where:
$X_i\sim_{iid}\,\text{Exponential}(\lambda)$
$N\sim\,\text{Geometric}_1(p)$
For all $i,\,N$ and $X_i$ are independent.
I need to find the probability distribution of $Z$:
$G_N(t)=\frac{(1-p)t}{1-pt}$
$M_X(t)=\frac{\lambda}{\lambda-t}$
$M_Z(z)=G_N(M_X(z))=\frac{(1-p)\left(\frac{\lambda}{\lambda-z}\right)}{1-p\left(\frac{ \lambda}{\lambda-z}\right)}$
$\Rightarrow Z\sim\,\text{Geometric}_1\left(p \frac{ \lambda}{\lambda-z}\right)$
Is that even correct? Should I be looking for $E[Z]$ and $V[Z]$ ?