- #1
PhDeezNutz
- 793
- 551
- Homework Statement
- We can define the 4-velocity of a superluminally moving points in analogy to that of normal particles:
$$\tilde{U} = c \frac{d\tilde{R}}{ds}$$.
Prove that
$$\tilde{U} = \left( \frac{u^2}{c^2} \right)^{-\frac{1}{2}} \left( c , \tilde{u} \right)$$
and
$$U^2 = - c^2$$
But ##\tilde{U}## is still tangent to the worldline.
- Relevant Equations
- $$\tilde{R} = \left( ct,x,y,z \right)$$
$$\tilde{U} = \frac{d\tilde{R}}{d \tau}$$
$$d \tau^2 = \frac{ds^2}{c^2} \Rightarrow d \tau = \frac{ds}{c}$$
I think for sub-luminal velocities we use signature ##(+,-,-,-)## and for super luminal velocities we use ##(-,+,+,+)##. I initially thought we could use either signature in either case but I'm only able to get
$$\tilde{U} = \left( \frac{u^2}{c^2} \right)^{-\frac{1}{2}} \left( c , \tilde{u} \right)$$
using ##(-,+,+,+)##
To that end
$$\eta = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{pmatrix}$$
The first thing I want to do is reconcile the two definitions of 4-velocities ##\tilde{U} = \frac{d \tilde{R}}{d \tau} = c \frac{ d \tilde{R}}{ds}##Start off with the usual definition of 4-velocity##\tilde{U} = \frac{d \tilde{R}}{d \tau}##we know that d \tau^2 = \frac{ds^2}{c^2} \Rightarrow d \tau = \frac{ds}{c}So ##\tilde{U} = \frac{d \tilde{R}}{d \tau} = c \frac{ d \tilde{R}}{ds}##Now going back to the more tractable definition of 4-velocity ##\tilde{U} = \frac{d \tilde{R}}{d \tau} = \frac{d}{d \tau} \left( ct,x,y,z \right) = \left( c \frac{dt}{d\tau}, \dot{x} \frac{dt}{d\tau}, \dot{y} \frac{dt}{d\tau}, \dot{z} \frac{dt}{d\tau} \right)##What is ##\frac{dt}{d\tau}## ?##ds^2 = \left( c dt, dx, dy, dz \right) \eta \left( c dt, dx, dy, dz \right) = - c^2 dt^2 + \left( dx^2 + dy^2 + dz^2 \right)####d \tau^2 = \frac{ds^2}{c^2} = - dt^2 + \frac{1}{c^2} \left(dx^2 + dy^2 + dz^2 \right)####\frac{d\tau^2}{dt^2} = -1 + \frac{1}{c^2} \left( \dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) = \left(\frac{u^2}{c^2} - 1 \right)####\frac{d \tau}{dt} = \sqrt{\frac{u^2}{c^2} - 1} \Rightarrow \frac{dt}{d \tau} = \frac{1}{\sqrt{\frac{u^2}{c^2} - 1}}##Therefore the first result we wanted (correct)##\tilde{U} = \left( \frac{u^2}{c^2} - 1\right)^{-\frac{1}{2}} \left(c, \tilde{u} \right) ##However I am having trouble proving ##U^2 = - c^2##Let ##\Gamma = \left( \frac{u^2}{c^2} - 1\right)^{-\frac{1}{2}}####U^2 = \tilde{U} \cdot \tilde{U} = \left( \Gamma c, \Gamma u_1, \Gamma u_2 , \Gamma u_3\right) \eta \left( \Gamma c, \Gamma u_1, \Gamma u_2 , \Gamma u_3\right) = \left( \Gamma c, \Gamma u_1, \Gamma u_2 , \Gamma u_3\right) \cdot \left( -\Gamma c, \Gamma u_1, \Gamma u_2 , \Gamma u_3\right) = -\Gamma^2 c^2 + \Gamma u^2 = \Gamma^2 \left( u^2 - c^2 \right) = \Gamma c^2 \left( \frac{u^2}{c^2} - 1\right) = c^2##we wanted ##-c^2## ( Before moving on to prove that the 4-velocity is tangent to the worldline I'd like to reconcile this result first)