- #1
orangephysik
- 11
- 1
- Homework Statement
- (See below)
- Relevant Equations
- (See below)
##\mathbf {Homework ~Statement:}##
Consider the superposition of two one-dimensional harmonic waves
$$s_1(x,t)=3.5 cm \cdot cos(27.5s^{-1} \cdot t - 5.65m^{-1} \cdot x)$$
$$s_2(x,t)=3.5 cm \cdot cos(27.5s^{-1} \cdot t - 5.5m^{-1} \cdot x)$$
##\mathbf {a)}## Calculate the wavelength ##\lambda##, the propagation speed ##v## and the period ##T## for both waves
##\mathbf {b)}## Calculate the superposition ##s(x,t)## of both waves
##\mathbf {c)}## For which ##x_{max}## will the amplitude be a maximum? What are these values?
##\mathbf {Relevant ~Equation:}##
##cos(\alpha)+cos(\beta) = 2 \cdot cos(\frac{\alpha + \beta}{2}) \cdot cos(\frac{\alpha - \beta}{2})##
--------------------------------------------------------------------------------------------------------------
##\mathbf {Attempt ~at~ a ~Solution:}##
##\mathbf {a)}## Well the equations are in the form of ##u(x,t) = a \cdot cos(\omega t \mp kx)##,
whereby ##|k| = \frac{2\pi}{\lambda} = \frac{\omega}{v}##
and ##\omega = 2\pi f=\frac{2\pi}{T}##
I get
##\mathbf {b)}## Using the relevant equation I got
##s_1 + s_2 =## ## 7 cm \cdot cos(\frac{55s^{-1}\cdot t-11.15 m^{-1}\cdot x}{2})cos(0.075)##
##\mathbf {c)}## I considered the case for ##cos(0)=cos(\pi)=1##
and got
##x=\frac{55s^{-1}\cdot t}{11.15 m^{-1}}##
and
##x=-\frac{2\pi - 55s^{-1}\cdot t}{11.15 m^{-1}}##
and so the maximum amplitude would then be
##x_{max}=\pm 7cm\cdot cos(0.075)##
Are my solutions correct? I remember for part (a) I got 0 points in the exam. I don't know what I did wrong.
Consider the superposition of two one-dimensional harmonic waves
$$s_1(x,t)=3.5 cm \cdot cos(27.5s^{-1} \cdot t - 5.65m^{-1} \cdot x)$$
$$s_2(x,t)=3.5 cm \cdot cos(27.5s^{-1} \cdot t - 5.5m^{-1} \cdot x)$$
##\mathbf {a)}## Calculate the wavelength ##\lambda##, the propagation speed ##v## and the period ##T## for both waves
##\mathbf {b)}## Calculate the superposition ##s(x,t)## of both waves
##\mathbf {c)}## For which ##x_{max}## will the amplitude be a maximum? What are these values?
##\mathbf {Relevant ~Equation:}##
##cos(\alpha)+cos(\beta) = 2 \cdot cos(\frac{\alpha + \beta}{2}) \cdot cos(\frac{\alpha - \beta}{2})##
--------------------------------------------------------------------------------------------------------------
##\mathbf {Attempt ~at~ a ~Solution:}##
##\mathbf {a)}## Well the equations are in the form of ##u(x,t) = a \cdot cos(\omega t \mp kx)##,
whereby ##|k| = \frac{2\pi}{\lambda} = \frac{\omega}{v}##
and ##\omega = 2\pi f=\frac{2\pi}{T}##
I get
##\lambda## | ##v## | ##T## | |
##s_1(x,t)## | ##1.11m## | ##4.86 m/s## | ##0.228 s## |
##s_2(x,t)## | ##1.14m## | ##4.99 m/s## | ##0.228 s## |
##\mathbf {b)}## Using the relevant equation I got
##s_1 + s_2 =## ## 7 cm \cdot cos(\frac{55s^{-1}\cdot t-11.15 m^{-1}\cdot x}{2})cos(0.075)##
##\mathbf {c)}## I considered the case for ##cos(0)=cos(\pi)=1##
and got
##x=\frac{55s^{-1}\cdot t}{11.15 m^{-1}}##
and
##x=-\frac{2\pi - 55s^{-1}\cdot t}{11.15 m^{-1}}##
and so the maximum amplitude would then be
##x_{max}=\pm 7cm\cdot cos(0.075)##
Are my solutions correct? I remember for part (a) I got 0 points in the exam. I don't know what I did wrong.