- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 244
If ##R## is a commutative ring with ##1## and ##M## is an ##R##-module, the support of ##M## is defined as ##\operatorname{Supp}M = \{\mathfrak{p}\in \operatorname{Spec} R\mid M_\mathfrak{p} \neq 0\}##. Show that if ##\phi : R \to S## is a ring homomorphism and ##M## is a finitely generated ##R##-module, then $$\operatorname{Supp}(S\otimes_R M) = (\phi^*)^{-1}(\operatorname{Supp} M)$$ where ##\phi^* : \operatorname{Spec} S \to \operatorname{Spec} R## is defined by ##\phi^*(\mathfrak{q}) = \phi^{-1}(\mathfrak{q})##.