- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{206.b.46}$
\begin{align*}
\displaystyle
S_{46}&=\sum_{k=1}^{\infty} \frac{2^k}{e^{k}-1 }\approx3.32569\\
% e^7 &=1+7+\frac{7^2}{2!}
%+\frac{7^3}{3!}+\frac{7^4}{4!}+\cdots \\
%e^7 &=1+7+\frac{49}{2}+\frac{343}{6}+\frac{2401}{24}+\cdots
\end{align*}
$\textsf{root test}$
$$\sqrt[k]{\frac{2^k}{e^{k}-1 } }
=2\left(\frac{1}{e^{k}-1 }\right)^{\frac{1}{k}}$$
$\textsf{this appears to converge }$
\begin{align*}
\displaystyle
S_{46}&=\sum_{k=1}^{\infty} \frac{2^k}{e^{k}-1 }\approx3.32569\\
% e^7 &=1+7+\frac{7^2}{2!}
%+\frac{7^3}{3!}+\frac{7^4}{4!}+\cdots \\
%e^7 &=1+7+\frac{49}{2}+\frac{343}{6}+\frac{2401}{24}+\cdots
\end{align*}
$\textsf{root test}$
$$\sqrt[k]{\frac{2^k}{e^{k}-1 } }
=2\left(\frac{1}{e^{k}-1 }\right)^{\frac{1}{k}}$$
$\textsf{this appears to converge }$
Last edited: