- #1
lys04
- 113
- 4
- TL;DR Summary
- prove that a supremum for a set doesn't exist; relations, total order and partial order
Hello, found this proof online, I was wondering why they defined r_2=r_1-(r_1^2-2)/(r_1+2)? i understand the numerator, because if i did r_1^2-4 then there might be a chance that this becomes negative. But for the denominator, instead of plus 2, can i do plus 10 as well? or some other number thats positive
I also did some reading on Cartesian product, relations, total order and partial order.
So a Cartesian product AxB is just ordered pair (a,b) where a is an element of A and b is an element of B right.
And a relation is just a subset of the Cartesian product.
Now total and partial orders.
Total order is denoted by < and partial order is denoted by <=? I’m a bit unsure about these, please correct me if I’m wrong.
And a total order relation requires four things:
Reflexive, anti-symmetric, transitive and comparability? I’m a bit unsure what comparability is though.
And for partial order relation I think it just needs to be reflexive, anti-symmetric and transitive?
I also did some reading on Cartesian product, relations, total order and partial order.
So a Cartesian product AxB is just ordered pair (a,b) where a is an element of A and b is an element of B right.
And a relation is just a subset of the Cartesian product.
Now total and partial orders.
Total order is denoted by < and partial order is denoted by <=? I’m a bit unsure about these, please correct me if I’m wrong.
And a total order relation requires four things:
Reflexive, anti-symmetric, transitive and comparability? I’m a bit unsure what comparability is though.
And for partial order relation I think it just needs to be reflexive, anti-symmetric and transitive?