- #1
andrewjb
- 1
- 0
I have a problem that I've been stuck on for a while as follows,
Find the surface area of the part of the cylinder [tex]x^{2}+y^{2}=2ay[/tex] in the first octant that lies inside the sphere [tex]x^{2}+y^{2}+z^{2}=4a^{2}[/tex]. Express your answer in terms of a single integral in [tex]\phi[/tex], you do not need to evaluate this integral.
I've started by parametrization the cylinder as [tex]S(\theta,z)=(\sqrt{2ay}cos(\theta),(\sqrt{2ay}sin(\theta),z)[/tex]. I then went on take the derivative of S in terms of [tex]\theta[/tex] and z and took the cross product of the terms. I know the bounds of integration for [tex]\theta[/tex] should be 0 to Pi/2, but from there I'm unsure of what to do in terms of setting up the bounds for z.
Any help would be appreciated, thanks!
Find the surface area of the part of the cylinder [tex]x^{2}+y^{2}=2ay[/tex] in the first octant that lies inside the sphere [tex]x^{2}+y^{2}+z^{2}=4a^{2}[/tex]. Express your answer in terms of a single integral in [tex]\phi[/tex], you do not need to evaluate this integral.
I've started by parametrization the cylinder as [tex]S(\theta,z)=(\sqrt{2ay}cos(\theta),(\sqrt{2ay}sin(\theta),z)[/tex]. I then went on take the derivative of S in terms of [tex]\theta[/tex] and z and took the cross product of the terms. I know the bounds of integration for [tex]\theta[/tex] should be 0 to Pi/2, but from there I'm unsure of what to do in terms of setting up the bounds for z.
Any help would be appreciated, thanks!