- #1
Petrus
- 702
- 0
Calculate the area of the surface of rotation which occurs when the curve
rotate in y-axe.
I start with \(\displaystyle x=\sqrt{28y}\) then \(\displaystyle f'(x)=\frac{14}{\sqrt{28y}}\)
so we got
\(\displaystyle 2\pi\int_0^{21}\sqrt{28y}\sqrt{1+(\frac{14}{\sqrt{28y}})}^2\)
then I rewrite as \(\displaystyle \int_0^2\sqrt{28y}\sqrt{1+\frac{196}{28y}}\)
\(\displaystyle \sqrt{28y}\sqrt{1+\frac{196}{28y}}<=>\sqrt{28y+196}\)
So I got \(\displaystyle 2\pi\int_0^{21}\sqrt{28y+196}\) and if Integrate it I get
\(\displaystyle \frac{(28y+196)^{1.5}}{1.5*28}\) Is this correct?
I start with \(\displaystyle x=\sqrt{28y}\) then \(\displaystyle f'(x)=\frac{14}{\sqrt{28y}}\)
so we got
\(\displaystyle 2\pi\int_0^{21}\sqrt{28y}\sqrt{1+(\frac{14}{\sqrt{28y}})}^2\)
then I rewrite as \(\displaystyle \int_0^2\sqrt{28y}\sqrt{1+\frac{196}{28y}}\)
\(\displaystyle \sqrt{28y}\sqrt{1+\frac{196}{28y}}<=>\sqrt{28y+196}\)
So I got \(\displaystyle 2\pi\int_0^{21}\sqrt{28y+196}\) and if Integrate it I get
\(\displaystyle \frac{(28y+196)^{1.5}}{1.5*28}\) Is this correct?