Surface density of the charges induced on the bases of the cylinder

This means that ##\varepsilon = \frac{\varepsilon_r}{\varepsilon_0}##, where ##\varepsilon_r## is the relative permittivity and ##\varepsilon_0## is the permittivity of free space. So, in this case, ##\varepsilon## is indeed dimensionless.
  • #1
rokiboxofficial Ref
3
1
Homework Statement
The dielectric cylinder is in an external uniform electric field E, which is parallel to the axis of the cylinder. Find the surface density of the charges induced on the bases of the cylinder. Dielectric constant of the cylinder material is equal to ε. The height of a cylinder is much less than the radius of its bases.
Relevant Equations
##E_{in} = E_{out} - E_{ind}##
##E_{in} = \frac{E_{out}}{\varepsilon}##
The correct answer to this problem is: ##\sigma = \varepsilon_0E\frac{\varepsilon-1}{\varepsilon}##
Here is my attempt to solve it, please tell me what is my mistake?
##E_{in} = E_{out} - E_{ind}##
##E_{ind} = E_{out} - E_{in}##
##E_{in} = \frac{E_{out}}{\varepsilon}##
##E_{ind} = E_{out} - \frac{E_{out}}{\varepsilon}##
##E = \frac{\sigma}{2\varepsilon_0\varepsilon}##
##E_{ind} = E_{ind+} + E_{ind-}##
##E_{ind} = \frac{\sigma}{2\varepsilon_0\varepsilon} + \frac{\sigma}{2\varepsilon_0\varepsilon} = \frac{\sigma}{\varepsilon_0\varepsilon}##
##\sigma = E_{ind}\varepsilon_0\varepsilon##
##\sigma = \left( E_{out} - \frac{E_{out}}{\varepsilon} \right)\varepsilon_0\varepsilon##
##\sigma = E_{out}\varepsilon_0\varepsilon- \frac{E_{out}\varepsilon_0\varepsilon}{\varepsilon}##
##\sigma = E_{out}\varepsilon_0\varepsilon- E_{out}\varepsilon_0##
##\sigma = E_{out}\varepsilon_0\left( \varepsilon- 1 \right)##
 
Physics news on Phys.org
  • #2
I think ##~E_{in} = \frac{E_{out}}{\varepsilon}~## should be ##~E_{in} = \frac{\varepsilon_0 E_{out}}{\varepsilon}~## otherwise the dimensions are incorrect. See if that fixes the problem.
 
  • #3
kuruman said:
I think ##~E_{in} = \frac{E_{out}}{\varepsilon}~## should be ##~E_{in} = \frac{\varepsilon_0 E_{out}}{\varepsilon}~## otherwise the dimensions are incorrect. See if that fixes the problem.
No, it doesn't fix it:

##E_{in} = \frac{\varepsilon_0E_{out}}{\varepsilon}##
##E_{ind} = E_{out} - E_{in}##
##E_{ind} = E_{out} - \frac{\varepsilon_0E_{out}}{\varepsilon}##
##\sigma = \left( E_{out} - \frac{\varepsilon_0E_{out}}{\varepsilon} \right)\varepsilon_0\varepsilon##
##\sigma = E_{out}\varepsilon_0\varepsilon- \frac{\varepsilon_0E_{out}\varepsilon_0\varepsilon}{\varepsilon}##
##\sigma = E_{out}\varepsilon_0\varepsilon- E_{out}{\varepsilon_0}^2##
##\sigma = E_{out}\varepsilon_0\left( \varepsilon- \varepsilon_0 \right)##

And the formula ##E_{in} = \frac{E_{out}}{\varepsilon}## was given to me in the training material for the task, I think that it is most likely correct.
 
  • #4
rokiboxofficial Ref said:
The correct answer to this problem is: ##\sigma = \varepsilon_0E\frac{\varepsilon-1}{\varepsilon}##
Here is my attempt to solve it, please tell me what is my mistake?
##E_{in} = E_{out} - E_{ind}##
##E_{ind} = E_{out} - E_{in}##
##E_{in} = \frac{E_{out}}{\varepsilon}##
##E_{ind} = E_{out} - \frac{E_{out}}{\varepsilon}##
##E = \frac{\sigma}{2\varepsilon_0\varepsilon}##
##E_{ind} = E_{ind+} + E_{ind-}##
##E_{ind} = \frac{\sigma}{2\varepsilon_0\varepsilon} + \frac{\sigma}{2\varepsilon_0\varepsilon} = \frac{\sigma}{\varepsilon_0\varepsilon}##
##\sigma = E_{ind}\varepsilon_0\varepsilon##
##\sigma = \left( E_{out} - \frac{E_{out}}{\varepsilon} \right)\varepsilon_0\varepsilon##
##\sigma = E_{out}\varepsilon_0\varepsilon- \frac{E_{out}\varepsilon_0\varepsilon}{\varepsilon}##
##\sigma = E_{out}\varepsilon_0\varepsilon- E_{out}\varepsilon_0##
##\sigma = E_{out}\varepsilon_0\left( \varepsilon- 1 \right)##
I believe the mistake occurs where you wrote $$E = \frac{\sigma}{2\varepsilon_0\varepsilon}$$ for the electric field produced by ##\sigma## on one of the surfaces. You can treat the surface as an infinite plane. The electric field produced by an infinite plane of surface charge ##\sigma## can be found using Gauss' law.
 
  • #5
kuruman said:
I think ##~E_{in} = \frac{E_{out}}{\varepsilon}~## should be ##~E_{in} = \frac{\varepsilon_0 E_{out}}{\varepsilon}~## otherwise the dimensions are incorrect. See if that fixes the problem.
Looks like ##\varepsilon## is being used for the relative permittivity, so is dimensionless.
 
  • #6
TSny said:
I believe the mistake occurs where you wrote $$E = \frac{\sigma}{2\varepsilon_0\varepsilon}$$ for the electric field produced by ##\sigma## on one of the surfaces. You can treat the surface as an infinite plane. The electric field produced by an infinite plane of surface charge ##\sigma## can be found using Gauss' law.
Yes, you are right! Thank you a lot!
Is this solution a correct?
By Gauss' law:
##\frac{q}{\varepsilon_0} = ES_{full}##
##\frac{q}{\varepsilon_0} = 2ES##
##E = \frac{q}{2\varepsilon_0S}##
##E = \frac{\sigma}{2\varepsilon_0}##
##E_{ind} = E_{ind+} + E_{ind-}##
##E_{ind} = \frac{\sigma}{2\varepsilon_0} + \frac{\sigma}{2\varepsilon_0} = \frac{\sigma}
{\varepsilon_0}##
##\sigma = E_{ind}\varepsilon_0##
##E_{ind} = E_{out} - \frac{E_{out}}{\varepsilon}##
##\sigma = \left( E_{out} - \frac{E_{out}}{\varepsilon} \right)\varepsilon_0##
##\sigma = E_{out}\varepsilon_0- \frac{E_{out}\varepsilon_0}{\varepsilon}##
##\sigma = E_{out}\varepsilon_0\left( 1 - \frac{1}{\varepsilon}\right)##
##\sigma = E_{out}\varepsilon_0\left( \frac{\varepsilon}{\varepsilon} - \frac{1}{\varepsilon}\right)##
##\sigma = E_{out}\varepsilon_0\left(\frac{\varepsilon - 1}{\varepsilon}\right)##
 
  • #7
rokiboxofficial Ref said:
Yes, you are right! Thank you a lot!
Is this solution a correct?
By Gauss' law:
##\frac{q}{\varepsilon_0} = ES_{full}##
##\frac{q}{\varepsilon_0} = 2ES##
##E = \frac{q}{2\varepsilon_0S}##
##E = \frac{\sigma}{2\varepsilon_0}##
##E_{ind} = E_{ind+} + E_{ind-}##
##E_{ind} = \frac{\sigma}{2\varepsilon_0} + \frac{\sigma}{2\varepsilon_0} = \frac{\sigma}
{\varepsilon_0}##
##\sigma = E_{ind}\varepsilon_0##
##E_{ind} = E_{out} - \frac{E_{out}}{\varepsilon}##
##\sigma = \left( E_{out} - \frac{E_{out}}{\varepsilon} \right)\varepsilon_0##
##\sigma = E_{out}\varepsilon_0- \frac{E_{out}\varepsilon_0}{\varepsilon}##
##\sigma = E_{out}\varepsilon_0\left( 1 - \frac{1}{\varepsilon}\right)##
##\sigma = E_{out}\varepsilon_0\left( \frac{\varepsilon}{\varepsilon} - \frac{1}{\varepsilon}\right)##
##\sigma = E_{out}\varepsilon_0\left(\frac{\varepsilon - 1}{\varepsilon}\right)##
Looks good.
 
  • Like
Likes rokiboxofficial Ref
  • #8
haruspex said:
Looks like ##\varepsilon## is being used for the relative permittivity, so is dimensionless.
Yes. ##\varepsilon## is given to be the "dielectric constant", which is the same as the relative permittivity.
 

FAQ: Surface density of the charges induced on the bases of the cylinder

What is surface density of charges induced on the bases of a cylinder?

The surface density of charges induced on the bases of a cylinder refers to the amount of electric charge per unit area that accumulates on the flat circular surfaces (bases) of the cylindrical object when it is exposed to an electric field or when charges are otherwise induced.

How is the surface density of charges on the bases of a cylinder calculated?

The surface density of charges (σ) on the bases of a cylinder can be calculated using Gauss's law. For a uniformly charged cylinder, it is given by σ = Q / A, where Q is the total induced charge and A is the area of the base of the cylinder. The area A is πr², where r is the radius of the base.

What factors affect the surface density of charges on a cylindrical base?

Several factors can affect the surface density of charges on a cylindrical base, including the total amount of charge induced, the radius of the cylinder's base, the material properties of the cylinder, and the presence of external electric fields or nearby conductive objects.

Why is understanding the surface density of charges on a cylinder important?

Understanding the surface density of charges on a cylinder is crucial in various fields such as electrostatics, material science, and electrical engineering. It helps in designing and analyzing capacitors, understanding charge distribution in conductors, and solving problems related to electric fields and potentials.

Can the surface density of charges be non-uniform on the bases of a cylinder?

Yes, the surface density of charges can be non-uniform on the bases of a cylinder, especially if the cylinder is placed in a non-uniform electric field or if there are asymmetries in the surrounding environment. Non-uniform distribution can also occur due to the shape of the cylinder or the presence of other nearby conductive objects.

Back
Top