- #1
rokiboxofficial Ref
- 3
- 1
- Homework Statement
- The dielectric cylinder is in an external uniform electric field E, which is parallel to the axis of the cylinder. Find the surface density of the charges induced on the bases of the cylinder. Dielectric constant of the cylinder material is equal to ε. The height of a cylinder is much less than the radius of its bases.
- Relevant Equations
- ##E_{in} = E_{out} - E_{ind}##
##E_{in} = \frac{E_{out}}{\varepsilon}##
The correct answer to this problem is: ##\sigma = \varepsilon_0E\frac{\varepsilon-1}{\varepsilon}##
Here is my attempt to solve it, please tell me what is my mistake?
##E_{in} = E_{out} - E_{ind}##
##E_{ind} = E_{out} - E_{in}##
##E_{in} = \frac{E_{out}}{\varepsilon}##
##E_{ind} = E_{out} - \frac{E_{out}}{\varepsilon}##
##E = \frac{\sigma}{2\varepsilon_0\varepsilon}##
##E_{ind} = E_{ind+} + E_{ind-}##
##E_{ind} = \frac{\sigma}{2\varepsilon_0\varepsilon} + \frac{\sigma}{2\varepsilon_0\varepsilon} = \frac{\sigma}{\varepsilon_0\varepsilon}##
##\sigma = E_{ind}\varepsilon_0\varepsilon##
##\sigma = \left( E_{out} - \frac{E_{out}}{\varepsilon} \right)\varepsilon_0\varepsilon##
##\sigma = E_{out}\varepsilon_0\varepsilon- \frac{E_{out}\varepsilon_0\varepsilon}{\varepsilon}##
##\sigma = E_{out}\varepsilon_0\varepsilon- E_{out}\varepsilon_0##
##\sigma = E_{out}\varepsilon_0\left( \varepsilon- 1 \right)##
Here is my attempt to solve it, please tell me what is my mistake?
##E_{in} = E_{out} - E_{ind}##
##E_{ind} = E_{out} - E_{in}##
##E_{in} = \frac{E_{out}}{\varepsilon}##
##E_{ind} = E_{out} - \frac{E_{out}}{\varepsilon}##
##E = \frac{\sigma}{2\varepsilon_0\varepsilon}##
##E_{ind} = E_{ind+} + E_{ind-}##
##E_{ind} = \frac{\sigma}{2\varepsilon_0\varepsilon} + \frac{\sigma}{2\varepsilon_0\varepsilon} = \frac{\sigma}{\varepsilon_0\varepsilon}##
##\sigma = E_{ind}\varepsilon_0\varepsilon##
##\sigma = \left( E_{out} - \frac{E_{out}}{\varepsilon} \right)\varepsilon_0\varepsilon##
##\sigma = E_{out}\varepsilon_0\varepsilon- \frac{E_{out}\varepsilon_0\varepsilon}{\varepsilon}##
##\sigma = E_{out}\varepsilon_0\varepsilon- E_{out}\varepsilon_0##
##\sigma = E_{out}\varepsilon_0\left( \varepsilon- 1 \right)##