- #1
bosox284
- 2
- 0
Homework Statement
Evaluate the surface integral, the double integral of zdS if the region is the patch of surface defined by x^2 + y^2 - z^2 = -1 in the first octant with z less than or equal to 4.
The attempt at a solution
I really don't know where to begin. I believe the equation is of a hyperboloid of two sheets. So I want to say I have to parametrize the equation with x = bxcos(u)sinh(v), y = bysin(u)sinh(v), z = bzcosh(v), and then take the partial derivatives of u and v, and take the cross product of the two. Could someone please point me in the right direction? Or instruct me where to go from there?
Evaluate the surface integral, the double integral of zdS if the region is the patch of surface defined by x^2 + y^2 - z^2 = -1 in the first octant with z less than or equal to 4.
The attempt at a solution
I really don't know where to begin. I believe the equation is of a hyperboloid of two sheets. So I want to say I have to parametrize the equation with x = bxcos(u)sinh(v), y = bysin(u)sinh(v), z = bzcosh(v), and then take the partial derivatives of u and v, and take the cross product of the two. Could someone please point me in the right direction? Or instruct me where to go from there?