- #1
ma3088
- 4
- 0
Homework Statement
Find [tex]\int\int_{S}[/tex] F dS where S is determined by z=0, 0[tex]\leq[/tex]x[tex]\leq[/tex]1, 0[tex]\leq[/tex]y[tex]\leq[/tex]1 and F (x,y,z) = xi+x2j-yzk.
Homework Equations
Tu=[tex]\frac{\partial(x)}{\partial(u)}[/tex](u,v)i+[tex]\frac{\partial(y)}{\partial(u)}[/tex](u,v)j+[tex]\frac{\partial(z)}{\partial(u)}[/tex](u,v)k
Tv=[tex]\frac{\partial(x)}{\partial(v)}[/tex](u,v)i+[tex]\frac{\partial(y)}{\partial(v)}[/tex](u,v)j+[tex]\frac{\partial(z)}{\partial(v)}[/tex](u,v)k
[tex]\int\int_{\Phi}[/tex] F dS = [tex]\int\int_{D}[/tex] F * (TuxTv) du dv
The Attempt at a Solution
To start off, I'm not sure how to parametrize the surface S. Any help is appreciated.