- #1
flyingpig
- 2,579
- 1
Homework Statement
My book says proves this formula
[tex]\iint_S f(x,y,z) dS = \iint_D f(x,y,g(x,y)) \sqrt{\left (\frac{\partial z}{\partial x} \right )^2 + \left (\frac{\partial z}{\partial y} \right )^2 + 1 } \;dA[/tex]
Any surface with equation z = g(x,y) can be regarded as a parametric surface with parametric equations
x = x
y = y
z = g(x,y)
rx = i + gx k
ry = j + gy k
|rx x ry| = [tex]\sqrt{\left (\frac{\partial z}{\partial x} \right )^2 + \left (\frac{\partial z}{\partial y} \right )^2 + 1 }[/tex]
Thus
[tex]\iint_S f(x,y,z) dS = \iint_D f(x,y,g(x,y)) \sqrt{\left (\frac{\partial z}{\partial x} \right )^2 + \left (\frac{\partial z}{\partial y} \right )^2 + 1 } \;dA[/tex]
Question
How do they know that every parametrization falls nicely as x = x and y = y?