- #1
A330NEO
- 20
- 0
Homework Statement
##\iint_S (x^2+y^2)dS##, ##S##is the surface with vector equation ##r(u, v)## = ##(2uv, u^2-v^2, u^2+v^2)##, ##u^2+v^2 \leq 1##
Homework Equations
Surface Integral. ##\iint_S f(x, y, z)dS = \iint f(r(u, v))\left | r_u \times r_v \right |dA##,
The Attempt at a Solution
First, I tried to shift the form of ##\iint_S (x^2+y^2)dS##. ##x^2+y^2##.
##x^2+y^2## = ##u^4v^4+2u^2v^2+v^4##, and ##\left | r_u \times r_v \right |## = ##\sqrt{32v^4+64u^2v^2+32u^4}##
Thus, the initial integral becomes ##\iint_S 2^2sqrt{2}(u^2+v^2)^3 dudv##
I used polar coordinates, as u = rsin##\theta## and v = ##rsin\theta##. ##0\leq r\leq 1##, ## 0 \leq \theta \leq 2\pi##. As result, the answer came to be ##2^3\sqrt{2}/5*\pi## but the answer sheet says its zero. Am I missing something?[/B]