- #1
caffeinemachine
Gold Member
MHB
- 816
- 15
I am trying to prove the following:Let $R$ be a commutative ring and $M$ be a free $R$-module having a finite basis of $n$ elements.
Let $T:M\to M$ be a surjective $R$-module homomorphism.
Then $T$ is injective.Let $I$ be a maximal ideal of $R$.
Note that $I$ annihilates $\widehat M:=M/IM$ and thus $\widehat M$ is an $\bar (R/I)$-module.
Write $\bar R=R/I$.For each $r\in R$, write $\bar r$ to denote $r+I$ and for each $m\in M$ write $\widehat m$ to denote $m+IM$.Define $\widetilde T:\widehat M\to \widehat M$ as
$$\widetilde T(\widehat m)=\widehat{Tm},\quad \forall \widehat m\in \widehat M$$
It is easy to see that $\widetilde T$ is well defined.
Note that $\widetilde T$ is a surjective linear operator on a vector space and hence is also injective.Note that if $\mathcal B=\{e_1,\ldots,e_n\}$ is a basis of $M$, then $\widehat B=\{\widehat e_1,\ldots,\widehat e_n\}$ is a basis for $\widehat M$.Now suppose $T(r_1e_1+\cdots+r_ne_n)=0$. Then we get $\widetilde T(\bar r_1\widehat e_1+\cdots+\bar r_n\widehat e_n)=\widehat 0$.
Since $\widetilde T$ is injective, we get $\bar r_i=\bar 0$ for all $i$.
But this doesn't lead to $r_i=0$.Can anybody see how to complete the proof from here?
Let $T:M\to M$ be a surjective $R$-module homomorphism.
Then $T$ is injective.Let $I$ be a maximal ideal of $R$.
Note that $I$ annihilates $\widehat M:=M/IM$ and thus $\widehat M$ is an $\bar (R/I)$-module.
Write $\bar R=R/I$.For each $r\in R$, write $\bar r$ to denote $r+I$ and for each $m\in M$ write $\widehat m$ to denote $m+IM$.Define $\widetilde T:\widehat M\to \widehat M$ as
$$\widetilde T(\widehat m)=\widehat{Tm},\quad \forall \widehat m\in \widehat M$$
It is easy to see that $\widetilde T$ is well defined.
Note that $\widetilde T$ is a surjective linear operator on a vector space and hence is also injective.Note that if $\mathcal B=\{e_1,\ldots,e_n\}$ is a basis of $M$, then $\widehat B=\{\widehat e_1,\ldots,\widehat e_n\}$ is a basis for $\widehat M$.Now suppose $T(r_1e_1+\cdots+r_ne_n)=0$. Then we get $\widetilde T(\bar r_1\widehat e_1+\cdots+\bar r_n\widehat e_n)=\widehat 0$.
Since $\widetilde T$ is injective, we get $\bar r_i=\bar 0$ for all $i$.
But this doesn't lead to $r_i=0$.Can anybody see how to complete the proof from here?