MHB Sydney's question at Yahoo Answers regarding root approximation

AI Thread Summary
The discussion centers on approximating the root of the equation x^4 + x - 3 = 0 for x ≥ 0. An initial guess of x = 1 is suggested based on a function plot. Newton's method is applied, leading to a recursive formula for refining the approximation. Using a TI-89 Titanium graphing calculator, the iterative process yields a final approximation of the root as x ≈ 1.16403514029, indicating high precision. The response effectively guides the original poster in solving their calculus problem.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

CALCULUS HELP PLEASE!?

Approximate the solution to the following equation that satisfies the given condition: x^(4) + x - 3 = 0 ; x is greater than or equal to 0Please help I'm having so much trouble!

Here is a link to the question:

CALCULUS HELP PLEASE!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Sydney,

First, let's take a look at a plot of the function:

View attachment 582

We see the positive root is near $x=1$, so that will be a good initial guess.

Newton's method gives us the recursion:

$\displaystyle x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$

In our case, this is:

$\displaystyle x_{n+1}=x_n-\frac{x_n^4+x_n-3}{4x_n^3+1}=\frac{3(x_n^4+1)}{4x_n^3+1}$

where $x_0=1$.

Now, I have a TI-89 Titanium graphing calculator, so what I do is enter the following:

1 [ENTER] Result: 1
(3(ans(1)^4+1))/(4ans(1)^3+1) ♦[ENTER] Result: 1.2
♦[ENTER] Result: 1.16541961577
♦[ENTER] Result: 1.16403726916
♦[ENTER] Result: 1.16403514029
♦[ENTER] Result: 1.16403514029

Since the last two approximations are the same, we have exceeded the limit of accuracy of the calculator, and we know the required root, to 12 digits, is:

$x\approx1.16403514029$
 

Attachments

  • rootplot.jpg
    rootplot.jpg
    5.2 KB · Views: 89
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top