- #1
pyroknife
- 613
- 4
Homework Statement
Consider a symmetric n x n matrix ##A## with ##A^2=A##. Is the linear transformation ##T(\vec{x})=A\vec{x}## necessarily the orthogonal projection onto a subspace of ##R^n##?
Homework Equations
Symmetric matrix means ##A=A^T##
An orthogonal projection matrix is given by
##P=A(A^TA)^{-1}A^T## (1)
The Attempt at a Solution
We are given that ##A## is symmetric and idempotent. My procedure is to see if A satisfies equation (1).
Plugging in ##A=A^2## into (1): we get
##A^2(A^2^TA^2)^{-1}*(A^2)^T##
Last edited by a moderator: