- #1
henry_m
- 160
- 2
It is a well known fact that a symmetric bilinear form B on a finite-dimensional vector space V over any field F of characteristic not 2 is diagonalisable, i.e. there exists a basis [itex]\{e_i\}[/itex] such that [itex]B(e_i,e_j)=0[/itex] for [itex]i\neq j[/itex].
Does the same hold over an infinite dimensional vector space, provided that it has an algebraic basis? My insticts say no but I can't come up with a counterexample.
Here's one possible candidate. Let V be the set of all sequences [itex]\{x_i\}_{i\geq1}[/itex] over F for which only finitely many of the [itex]x_i[/itex] are nonzero. Let B be the following symmetric bilinear form:
[tex]B(\{x_i\},\{y_i\})=\sum_{i\geq1} (x_i y_{i+1}+ x_{i+1}y_i)[/tex]
which is a finite sum. Can you find a basis for V which is orthonormal wrt B? Can you prove that no such basis exists?
Thanks!
Does the same hold over an infinite dimensional vector space, provided that it has an algebraic basis? My insticts say no but I can't come up with a counterexample.
Here's one possible candidate. Let V be the set of all sequences [itex]\{x_i\}_{i\geq1}[/itex] over F for which only finitely many of the [itex]x_i[/itex] are nonzero. Let B be the following symmetric bilinear form:
[tex]B(\{x_i\},\{y_i\})=\sum_{i\geq1} (x_i y_{i+1}+ x_{i+1}y_i)[/tex]
which is a finite sum. Can you find a basis for V which is orthonormal wrt B? Can you prove that no such basis exists?
Thanks!