- #1
IniquiTrance
- 190
- 0
Homework Statement
(i) Show that if [itex]A[/itex] is symmetric positive semi-definite, then there exists a symmetric matrix [itex]B[/itex] such that [itex]A=B^2[/itex].
(ii) Let [itex]A[/itex] be symmetric positive definite. Find a matrix [itex]B[/itex] such that [itex]A=B^2[/itex].
Homework Equations
The Attempt at a Solution
For part 1, I used:
[tex] B = Q\sqrt{\Lambda} Q^T[/tex]
So that,
[tex]B^T B = (Q\sqrt{\Lambda} Q^T)^T Q\sqrt{\Lambda} Q^T[/tex]
[tex]=Q\sqrt{\Lambda} Q^T Q\sqrt{\Lambda} Q^T[/tex]
[tex]=Q\Lambda Q^T[/tex]
[tex]=A[/tex]
I am assuming this cannot be used for part 2. Any help is much appreciated!