MHB Symmetry of Points Across y = x Line?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Line Symmetry
AI Thread Summary
The discussion focuses on proving that the points (a, b) and (b, a) are symmetric about the line y = x. It establishes that the slope of the line connecting these points is -1, indicating it is perpendicular to y = x, which has a slope of 1. To demonstrate symmetry, it is necessary to show that the midpoint of the segment connecting these points lies on the line y = x. The midpoint is calculated as the arithmetic means of the coordinates of the points A(a, b) and B(b, a). This proof confirms the symmetry of the points across the line y = x.
mathdad
Messages
1,280
Reaction score
0
Show that the points (a, b) and (b, a) are symmetric about the line y = x.

Solution:

Let m = slope

m = (a - b)/(b - a)

I know the slope of y = x is 1.

Must I now show that the line y = x passes through the midpoint? If so, how is this done when the slope is not a number (as in this example)?
 
Mathematics news on Phys.org
Note that $$m=\frac{a-b}{b-a}=-1$$. Therefore, the line connecting $A(a,b)$ and $B(b,a)$ is perpendicular to the graph of $y=x$ (it is known that the product of slopes of perpendicular lines is $-1$). It is left to show that the intersection point of the two lines divides the segment $AB$ in half. You can prove this by showing that the middle of $AB$ lies on $y=x$. Recall that the coordinates of the middle of $AB$ are the arithmetic means of the corresponding coordinates of $A$ and $B$.
 
Evgeny.Makarov said:
Note that $$m=\frac{a-b}{b-a}=-1$$. Therefore, the line connecting $A(a,b)$ and $B(b,a)$ is perpendicular to the graph of $y=x$ (it is known that the product of slopes of perpendicular lines is $-1$). It is left to show that the intersection point of the two lines divides the segment $AB$ in half. You can prove this by showing that the middle of $AB$ lies on $y=x$. Recall that the coordinates of the middle of $AB$ are the arithmetic means of the corresponding coordinates of $A$ and $B$.

Must I find the midpoint using the given points?
 
RTCNTC said:
Must I find the midpoint using the given points?
Yes, as I said,
Evgeny.Makarov said:
You can prove this by showing that the middle of $AB$ lies on $y=x$. Recall that the coordinates of the middle of $AB$ are the arithmetic means of the corresponding coordinates of $A$ and $B$.
 
Evgeny.Makarov said:
Yes, as I said,

Great. Very informative.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top