- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey! :giggle:
Let $\displaystyle{W:=\left \{\begin{pmatrix}x\\ y\\ z\end{pmatrix}\in \mathbb{R}^3\mid x,y,z\in \{-1,1\}\right \}}$.
Draw the set $W$ in a coordinate system. Let $v=\neq w$ and $v,w\in W$. If they differ only at one coordinate connect these points by a line.
With this description we get a cube with vertices $(\pm 1 , \pm 1 , \pm 1)$, right? :unsure: Let \begin{equation*}d:=\begin{pmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}\ , \ s:=\begin{pmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \ , \ D:=\left \{\begin{pmatrix}e_1 & 0 & 0 \\ 0 & e_2 & 0 \\ 0 & 0 & e_3 \end{pmatrix} \mid e_i\in \{-1,1\}\right \}\end{equation*}
Show that for all $a\in \{d,s\}\cup D$ the map $w\mapsto aw$ is a symmetry of the cube and descibe the symmetry gemetrically.
Do we have tomultiply all vertices of the cube with each of these matrices? Or what are we supposed to do? :unsure: The following moves are the symmetries of the cube $W$:
1. Rotation at the axis $\mathbb{R}\begin{pmatrix}0 \\ 0\\ 1\end{pmatrix}$ with angle $\frac{\pi}{2}$.
2. Rotation at the axis $\mathbb{R}\begin{pmatrix}0 \\ 1\\ 0\end{pmatrix}$ with angle $\frac{\pi}{2}$.
3. Rotation at the axis $\mathbb{R}\begin{pmatrix}1 \\ 1\\ -1\end{pmatrix}$ with angle $\frac{2\pi}{3}$.
4. Rotation at the axis $\mathbb{R}\begin{pmatrix}1 \\ -1\\ -1\end{pmatrix}$ with angle $\frac{2\pi}{3}$.
5. Reflections to the plane, that is spanned by the vectors $\begin{pmatrix}1\\ -1\\ 0\end{pmatrix}$ and $\begin{pmatrix}0\\ 0\\ 1\end{pmatrix}$.
How can we find for these symmetries a matrix $a$ so that the map $w\mapsto aw$ describes each symmetry? :unsure:
Let $\displaystyle{W:=\left \{\begin{pmatrix}x\\ y\\ z\end{pmatrix}\in \mathbb{R}^3\mid x,y,z\in \{-1,1\}\right \}}$.
Draw the set $W$ in a coordinate system. Let $v=\neq w$ and $v,w\in W$. If they differ only at one coordinate connect these points by a line.
With this description we get a cube with vertices $(\pm 1 , \pm 1 , \pm 1)$, right? :unsure: Let \begin{equation*}d:=\begin{pmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}\ , \ s:=\begin{pmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \ , \ D:=\left \{\begin{pmatrix}e_1 & 0 & 0 \\ 0 & e_2 & 0 \\ 0 & 0 & e_3 \end{pmatrix} \mid e_i\in \{-1,1\}\right \}\end{equation*}
Show that for all $a\in \{d,s\}\cup D$ the map $w\mapsto aw$ is a symmetry of the cube and descibe the symmetry gemetrically.
Do we have tomultiply all vertices of the cube with each of these matrices? Or what are we supposed to do? :unsure: The following moves are the symmetries of the cube $W$:
1. Rotation at the axis $\mathbb{R}\begin{pmatrix}0 \\ 0\\ 1\end{pmatrix}$ with angle $\frac{\pi}{2}$.
2. Rotation at the axis $\mathbb{R}\begin{pmatrix}0 \\ 1\\ 0\end{pmatrix}$ with angle $\frac{\pi}{2}$.
3. Rotation at the axis $\mathbb{R}\begin{pmatrix}1 \\ 1\\ -1\end{pmatrix}$ with angle $\frac{2\pi}{3}$.
4. Rotation at the axis $\mathbb{R}\begin{pmatrix}1 \\ -1\\ -1\end{pmatrix}$ with angle $\frac{2\pi}{3}$.
5. Reflections to the plane, that is spanned by the vectors $\begin{pmatrix}1\\ -1\\ 0\end{pmatrix}$ and $\begin{pmatrix}0\\ 0\\ 1\end{pmatrix}$.
How can we find for these symmetries a matrix $a$ so that the map $w\mapsto aw$ describes each symmetry? :unsure: