- #1
exmachina
- 44
- 0
In particular, a symplectic integrator to solve:
[itex]\ddot{\theta} + \dfrac{g}{l} \sin(\theta) = 0[/itex]
I'm currently using velocity verlet - by realizing that
[itex]\ddot{\theta} = -\nabla (-cos(\theta)) = A(\theta(t))[/itex]
ie. letting x = theta
v = dtheta/dt
a = d^2 theta /dt^2
is it safe to apply verlet integration to generalized coordinates? In particular, does this hold true for a generalized coordinate theta:
[itex]\theta_{t+dt} \approx \theta_t + \dot{\theta}_t dt + \frac{1}{2} \ddot{\theta}_t (dt)^2[/itex]
[itex]\ddot{\theta} + \dfrac{g}{l} \sin(\theta) = 0[/itex]
I'm currently using velocity verlet - by realizing that
[itex]\ddot{\theta} = -\nabla (-cos(\theta)) = A(\theta(t))[/itex]
ie. letting x = theta
v = dtheta/dt
a = d^2 theta /dt^2
is it safe to apply verlet integration to generalized coordinates? In particular, does this hold true for a generalized coordinate theta:
[itex]\theta_{t+dt} \approx \theta_t + \dot{\theta}_t dt + \frac{1}{2} \ddot{\theta}_t (dt)^2[/itex]
Last edited: