- #1
Alfredo Tifi
- 68
- 4
Problem Statement: It is possible to describe synchrotron radiation as caused by a loss of electrical charge of relativistic particles that are moving in a magnetic field?
Relevant Equations: E = mc2
An Italian expert of black hole M87 (Elisabetta Liuzzo) explains that the expected axial radiation coming from M87 black hole should be alike the synchrotron radiation and gives the following definition of synchrotron emission (translating from Italian): "an emission that derives from the loss of charge of relativistic particles immersed in a magnetic field".
This description of electrons or protons losing their electrical charge sounded really odd, but also interesting to me, as a teacher of chemistry.
One day a student of mine asked me if it would be possible to remove the electrical charge from an electron. I thanked him for his very profound question (he was 14), and I answered him that physics does not know what really "is" the electrical charge, although they can measure it. The same holds for the "mass". But in both cases, we can't conceive a physical particle with the electrical charge and mass and the "same" particle without mass or detached by its electrical charge in the same sense we can add or remove varnish from a golf ball.
So, mass and electrical charge are non-additive "interactional or behavioural properties" describing and measured by the interactions in the gravitational and electrical field. Maybe they are derived by something more fundamental, but we don't know what.
Now, we know the link between mass and energy. We understand that particles "became" photons, that is they "lose energy" into photons.
But, if a particle, in the interaction with the magnetic field would lose its charge, I can say anything of the conservation principle of energy as applied to an electrical charge, and anything about the charge conservation principle.
I cannot believe the claim from Liuzzo is completely false, even though it is written in a very popularizing article.
Relevant Equations: E = mc2
An Italian expert of black hole M87 (Elisabetta Liuzzo) explains that the expected axial radiation coming from M87 black hole should be alike the synchrotron radiation and gives the following definition of synchrotron emission (translating from Italian): "an emission that derives from the loss of charge of relativistic particles immersed in a magnetic field".
This description of electrons or protons losing their electrical charge sounded really odd, but also interesting to me, as a teacher of chemistry.
One day a student of mine asked me if it would be possible to remove the electrical charge from an electron. I thanked him for his very profound question (he was 14), and I answered him that physics does not know what really "is" the electrical charge, although they can measure it. The same holds for the "mass". But in both cases, we can't conceive a physical particle with the electrical charge and mass and the "same" particle without mass or detached by its electrical charge in the same sense we can add or remove varnish from a golf ball.
So, mass and electrical charge are non-additive "interactional or behavioural properties" describing and measured by the interactions in the gravitational and electrical field. Maybe they are derived by something more fundamental, but we don't know what.
Now, we know the link between mass and energy. We understand that particles "became" photons, that is they "lose energy" into photons.
But, if a particle, in the interaction with the magnetic field would lose its charge, I can say anything of the conservation principle of energy as applied to an electrical charge, and anything about the charge conservation principle.
I cannot believe the claim from Liuzzo is completely false, even though it is written in a very popularizing article.