- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I want to solve the following system of congruences:
$$x \equiv 13 \pmod{40} \\ x\equiv 5 \pmod{44} \\ x \equiv 38 \pmod{275}.$$I have thought the following:
$$x \equiv 13 \pmod{40} \Leftrightarrow x \equiv 13 \pmod{2^3 \cdot 5}$$
$$x \equiv 5 \pmod{44} \Leftrightarrow x \equiv 5 \pmod{2^2 \cdot 11}$$
$$x \equiv 38 \pmod{275} \Leftrightarrow x \equiv 38 \pmod{5^2 \cdot 11}$$$$x \equiv 13 \pmod{2^3 \cdot 5} \Leftrightarrow x \equiv 13 \pmod{2^3} \text{ and } x \equiv 13 \pmod{5} \ \ (1)$$
$$x \equiv 5 \pmod{2^2 \cdot 11} \Leftrightarrow x \equiv 5 \pmod{2^2} \text{ and } x \equiv 5 \pmod{11} \ \ (2)$$
$$x \equiv 38 \pmod{5^2 \cdot 11} \Leftrightarrow x \equiv 38 \mod{5^2} \text{ and } x \equiv 38 \pmod{11} \ \ (3)$$
$(1)$: $x \equiv 5 \pmod{2^3}$ and $x \equiv 3 \pmod{5}$
$(2)$: $x \equiv 1 \pmod{2^2}$ and $x \equiv 5 \pmod{11}$
$(3)$: $x \equiv 13 \pmod{5^2}$ and $x \equiv 5 \pmod{11}$Am I right so far?
How can we continue? Can we somehow apply the Chinese Remainder Theorem? (Thinking)
I want to solve the following system of congruences:
$$x \equiv 13 \pmod{40} \\ x\equiv 5 \pmod{44} \\ x \equiv 38 \pmod{275}.$$I have thought the following:
$$x \equiv 13 \pmod{40} \Leftrightarrow x \equiv 13 \pmod{2^3 \cdot 5}$$
$$x \equiv 5 \pmod{44} \Leftrightarrow x \equiv 5 \pmod{2^2 \cdot 11}$$
$$x \equiv 38 \pmod{275} \Leftrightarrow x \equiv 38 \pmod{5^2 \cdot 11}$$$$x \equiv 13 \pmod{2^3 \cdot 5} \Leftrightarrow x \equiv 13 \pmod{2^3} \text{ and } x \equiv 13 \pmod{5} \ \ (1)$$
$$x \equiv 5 \pmod{2^2 \cdot 11} \Leftrightarrow x \equiv 5 \pmod{2^2} \text{ and } x \equiv 5 \pmod{11} \ \ (2)$$
$$x \equiv 38 \pmod{5^2 \cdot 11} \Leftrightarrow x \equiv 38 \mod{5^2} \text{ and } x \equiv 38 \pmod{11} \ \ (3)$$
$(1)$: $x \equiv 5 \pmod{2^3}$ and $x \equiv 3 \pmod{5}$
$(2)$: $x \equiv 1 \pmod{2^2}$ and $x \equiv 5 \pmod{11}$
$(3)$: $x \equiv 13 \pmod{5^2}$ and $x \equiv 5 \pmod{11}$Am I right so far?
How can we continue? Can we somehow apply the Chinese Remainder Theorem? (Thinking)