- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I am looking at the following exercise:
Consider the initial value problem
$\left\{\begin{matrix}
x''(t)=x(t)\\
x(0)=a\\
x'(0)=b
\end{matrix}\right.$
Write it as a system of First-Order ODES with suitable initial values and show that Euler method can get unstable for a great step $(h)$.
That is the solution that the assistant of the prof gave us:
$$y_1=x \Rightarrow y_1'=x'=y_2 | y_1(0)=x(0)=a \\ y_2=x' \Rightarrow y_2'=x''=y_1 | y_2(0)=x'(0)=b $$
$$\binom{y_1}{y_2}'=\begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix} \binom{y_1}{y_2} \text{ with } \binom{y_1(0)}{y_2(0)}=\binom{a}{b}$$Euler method:
$$\binom{y_1^{n+1}}{y_2^{n+1}}=\binom{y_1^n}{y_2^n}+h \begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix} \binom{y_1^n}{y_2^n}=\binom{y_1^n+hy_2^n}{y_2^n+hy_1^n} \\ \binom{y_1^{n+1}}{y_2^{n+1}}= \begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{y_1^n}{y_2^n}$$$$b=-a$$
The exact solution of the initial value problem is ($t^n=nh$)
$\binom{y_1(t)}{y_2(t)}=e^t \binom{a}{-a} \Rightarrow \binom{y_1(t^n)}{y_2(t^n)}=e^{-t^n} \binom{a}{-a}=e^{-nh} \binom{a}{-a}$, $h$ constant, $n \to +\infty, y \to 0$.
$y=e^{-t}$Euler method
$\binom{y_1^1}{y_2^1}=\begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{y_1^0}{y_2^0}=\begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{a}{-a}=(1-h) \binom{a}{-a}$
$\binom{y_1^2}{y_2^2}=\begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{y_1^1}{y_2^1}=(1-h)^2 \binom{a}{-a}$
$\dots \dots \dots$
$\binom{y_1^n}{y_2^n}=(1-h)^n \binom{a}{-a}$
$|1-h|>1 \Rightarrow h>2$.
First of all, how do we find that $\binom{y_1^1}{y_2^1}=\begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{y_1^0}{y_2^0}=\begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{a}{-a}=(1-h) \binom{a}{-a},\binom{y_1^2}{y_2^2}=\begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{y_1^1}{y_2^1}=(1-h)^2 \binom{a}{-a}$, $\dots $,$\binom{y_1^n}{y_2^n}=(1-h)^n \binom{a}{-a}$?
I found the following:$\binom{y_1^1}{y_2^1}=\begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{a}{b}, \binom{y_1^2}{y_2^2}=\begin{pmatrix}
1+h^2 & 2h\\
2h & h^2+1
\end{pmatrix} \binom{a}{b}, \binom{y_1^3}{y_2^3}=\begin{pmatrix}
1+3h^2 & h(h^2+3)\\
h(h^2+3) & 1+3h^2
\end{pmatrix} \binom{a}{b}$
Am I wrong? (Worried) If not, how could we find the general formula? Also, don't we find the real solution of the system of the First-Order ODES as follows?$\begin{vmatrix}
-\lambda & 1\\
1& -\lambda
\end{vmatrix}=0 \Rightarrow \lambda^2=1 \Rightarrow \lambda=\pm 1$.
Now we are looking for the eigenvectors.
For $\lambda=1$:
$\begin{pmatrix}
-1 & 1 \\
1 & -1
\end{pmatrix} \binom{u}{w}=\binom{0}{0} \Rightarrow \left\{\begin{matrix}
-u+w=0\\
u-w=0
\end{matrix}\right. \Rightarrow \left\{\begin{matrix}
w=u\\
u=w
\end{matrix}\right. \overset{\text{ we set } u=1}{\Rightarrow } u=w=1$
For $\lambda=-1$:
$\begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix} \binom{u}{w}=\binom{0}{0} \Rightarrow u+w=0 \Rightarrow u=-w \overset{\text{ we set w=-1}}{\Rightarrow } u=1=-w$So the solution is of the form:
$\binom{y_1}{y_2}=c_1 \binom{1}{1} e^{t}+ c_2 \binom{-1}{1} e^{-t}$
Using the initial conditions, I got the following:
$\binom{y_1}{y_2}= \frac{a+b}{2} \binom{1}{1} e^t+ \frac{b-a}{2} \binom{-1}{1}e^{-t}$How could we show that for a great step $h$ the method can get unstable? (Thinking)
I am looking at the following exercise:
Consider the initial value problem
$\left\{\begin{matrix}
x''(t)=x(t)\\
x(0)=a\\
x'(0)=b
\end{matrix}\right.$
Write it as a system of First-Order ODES with suitable initial values and show that Euler method can get unstable for a great step $(h)$.
That is the solution that the assistant of the prof gave us:
$$y_1=x \Rightarrow y_1'=x'=y_2 | y_1(0)=x(0)=a \\ y_2=x' \Rightarrow y_2'=x''=y_1 | y_2(0)=x'(0)=b $$
$$\binom{y_1}{y_2}'=\begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix} \binom{y_1}{y_2} \text{ with } \binom{y_1(0)}{y_2(0)}=\binom{a}{b}$$Euler method:
$$\binom{y_1^{n+1}}{y_2^{n+1}}=\binom{y_1^n}{y_2^n}+h \begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix} \binom{y_1^n}{y_2^n}=\binom{y_1^n+hy_2^n}{y_2^n+hy_1^n} \\ \binom{y_1^{n+1}}{y_2^{n+1}}= \begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{y_1^n}{y_2^n}$$$$b=-a$$
The exact solution of the initial value problem is ($t^n=nh$)
$\binom{y_1(t)}{y_2(t)}=e^t \binom{a}{-a} \Rightarrow \binom{y_1(t^n)}{y_2(t^n)}=e^{-t^n} \binom{a}{-a}=e^{-nh} \binom{a}{-a}$, $h$ constant, $n \to +\infty, y \to 0$.
$y=e^{-t}$Euler method
$\binom{y_1^1}{y_2^1}=\begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{y_1^0}{y_2^0}=\begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{a}{-a}=(1-h) \binom{a}{-a}$
$\binom{y_1^2}{y_2^2}=\begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{y_1^1}{y_2^1}=(1-h)^2 \binom{a}{-a}$
$\dots \dots \dots$
$\binom{y_1^n}{y_2^n}=(1-h)^n \binom{a}{-a}$
$|1-h|>1 \Rightarrow h>2$.
First of all, how do we find that $\binom{y_1^1}{y_2^1}=\begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{y_1^0}{y_2^0}=\begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{a}{-a}=(1-h) \binom{a}{-a},\binom{y_1^2}{y_2^2}=\begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{y_1^1}{y_2^1}=(1-h)^2 \binom{a}{-a}$, $\dots $,$\binom{y_1^n}{y_2^n}=(1-h)^n \binom{a}{-a}$?
I found the following:$\binom{y_1^1}{y_2^1}=\begin{pmatrix}
1 & h\\
h & 1
\end{pmatrix} \binom{a}{b}, \binom{y_1^2}{y_2^2}=\begin{pmatrix}
1+h^2 & 2h\\
2h & h^2+1
\end{pmatrix} \binom{a}{b}, \binom{y_1^3}{y_2^3}=\begin{pmatrix}
1+3h^2 & h(h^2+3)\\
h(h^2+3) & 1+3h^2
\end{pmatrix} \binom{a}{b}$
Am I wrong? (Worried) If not, how could we find the general formula? Also, don't we find the real solution of the system of the First-Order ODES as follows?$\begin{vmatrix}
-\lambda & 1\\
1& -\lambda
\end{vmatrix}=0 \Rightarrow \lambda^2=1 \Rightarrow \lambda=\pm 1$.
Now we are looking for the eigenvectors.
For $\lambda=1$:
$\begin{pmatrix}
-1 & 1 \\
1 & -1
\end{pmatrix} \binom{u}{w}=\binom{0}{0} \Rightarrow \left\{\begin{matrix}
-u+w=0\\
u-w=0
\end{matrix}\right. \Rightarrow \left\{\begin{matrix}
w=u\\
u=w
\end{matrix}\right. \overset{\text{ we set } u=1}{\Rightarrow } u=w=1$
For $\lambda=-1$:
$\begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix} \binom{u}{w}=\binom{0}{0} \Rightarrow u+w=0 \Rightarrow u=-w \overset{\text{ we set w=-1}}{\Rightarrow } u=1=-w$So the solution is of the form:
$\binom{y_1}{y_2}=c_1 \binom{1}{1} e^{t}+ c_2 \binom{-1}{1} e^{-t}$
Using the initial conditions, I got the following:
$\binom{y_1}{y_2}= \frac{a+b}{2} \binom{1}{1} e^t+ \frac{b-a}{2} \binom{-1}{1}e^{-t}$How could we show that for a great step $h$ the method can get unstable? (Thinking)