System of Masses - Atwood Machine

In summary, Dale found an error in Dale's proposed Lagrangian for a system with 2 pulleys and 3 masses. This error causes the masses to accelerate towards freefall.
  • #1
erobz
Gold Member
3,938
1,679
Misplaced Homework Thread, no template
1665430450002.png


Would anyone verify whether or not I've formulated the proper Lagrangian here for the system above (the pulleys are massless, inextensible ropes of length ##L## and ##S##):

$$\mathcal{L} = T - U $$

$$ \mathcal{L} = \frac{1}{2} m_1 { \dot l_1 }^2+ \frac{1}{2} m_2 \left( { \dot l_2}- {\dot l_1 } \right)^2 + \frac{1}{2} M \left( {\dot l_1}+ {\dot l_2} \right) ^2 + m_1 g l_1 + m_2 g ( L - l_1 + l_2) + M g ( L - l_1 + S - l_2 )$$

If I find out this step looks ok, I'll post the remainder. I'm getting some unexpected result at the end for ## \ddot{l_2}## when ##m_1 \to 0##, and I'm wondering if I'm making an algebra error in the middle, or I have made a mistake right from the get-go.

This is an extension of a recent HW problem that I proposed (and go figure... turns out I can't solve it myself). I figured I 'd start a new thread since this is a different method of analyzing it.

Thanks for any help.
 
Physics news on Phys.org
  • #3
Dale said:
The Lagrangian looks good to me
Thanks Dale! I'm going to piece this together so it's not too much to process. I'm a newbie to using this machinery.

Next step:

$$ \frac{ \partial \mathcal{L} }{ \partial l_1 } = ( m_1 - m_2 -M ) g $$

$$ \frac{ \partial \mathcal{L} }{ \partial l_2 } = ( m_2 -M ) g $$

$$ \frac{ \partial \mathcal{L} }{ \partial \dot{l_1} } = m_1 \dot l_1 - m_2\left( \dot{l_2} - \dot{l_1} \right) + M \left( \dot{l_2} + \dot{l_1} \right) $$

$$ \frac{ \partial \mathcal{L} }{ \partial \dot{l_2} } = m_2 \left( \dot{l_2} - \dot{l_1} \right) + M \left( \dot{l_1} + \dot{l_2} \right) $$
 
  • #4
And:

$$ \frac{d}{dt} \frac{ \partial \mathcal{L} }{ \partial \dot{l_1} } = \left ( m_1 + m_2+M \right) \ddot {l_1} + \left( M - m_2\right) \ddot {l_2} $$

$$ \frac{d}{dt} \frac{ \partial \mathcal{L} }{ \partial \dot{l_2} } = \left( M - m_2 \right) \ddot{l_1} + \left( M+m_2 \right) \ddot{l_2}$$
 
  • #6
This is not someone’s physics homework, why did I get a warning?
 
  • #7
You didn't get a point. I just moved it. Even though it isn't homework it is homework-like so it belongs here. I removed the points from the warning before moving it. It won't affect your membership at all
 
  • Like
Likes erobz
  • #8
Are you going to solve the equations of motion or leave it at that?
 
  • #9
kuruman said:
Are you going to solve the equations of motion or leave it at that?
I’m planning on it, but since all that appears correct I’m thinking I have an algebra error to find…
 
  • Like
Likes kuruman and Dale
  • #10
I just had a lightbulb moment. It took many times putting into practice Einstein's definition of insanity... I didn't have an algebra mistake, but rather an interpretation error.

$$ \frac{ \partial \mathcal{L} }{ \partial l_1 } = \frac{d}{dt} \frac{ \partial \mathcal{L} }{ \partial \dot{l_1} }$$

$$ ( m_1 - m_2 -M ) g = \left ( m_1 + m_2+M \right) \ddot {l_1} + \left( M - m_2\right) \ddot {l_2}$$

$$ \ddot{l_1} = \frac{(m_1 -m_2 -M)g - (M-m_2) \ddot{l_2}}{m_1 + m_2 + M} \tag{1}$$

$$ \frac{ \partial \mathcal{L} }{ \partial l_2 } = \frac{d}{dt} \frac{ \partial \mathcal{L} }{ \partial \dot{l_2} }$$

$$( m_2 -M ) g = \left( M - m_2 \right) \ddot{l_1} + \left( M+m_2 \right) \ddot{l_2} \tag{2}$$

Substitute ##(1) \to (2)##:

$$ \ddot{l_2} = \frac{ (m_1 + m_2 + M)( m_2 - M ) - ( M - m_2)(m_1 -m_2 -M) }{ ( m_1 + m_2 + M )(M+m_2) -(M-m_2)^2 } g \tag{3}$$

I had expected the masses to be in freefall if ##m_1 \to 0##, I reached the conclusion that ##m_1 \to 0, \ddot{l_2} = g ##. That conclusion was reached in error.

I had found what I was looking for, but I just hadn't realized it ( because I was thinking in terms of what I had done in the HW problem trying to use Newtons Laws )

Instead, I see that as ##m_1 \to 0, \ddot{l_2} \to 0 g ## meaning the length of the rope is not changing w.r.t. the pulley its attached to. They are both accelerating at ## - \ddot{l_1} = g## which is found by substituting ##m_1 = 0, \ddot{l_2} = 0## into ##(1)##.

Thats very good news! (I think?)

P.S. I realize ##(3)## simplifies greatly...I was getting tired.

$$\ddot{l_2} = \frac{ 2m_1(m_2 - M) }{m_1M + m_1 m_2 + 2 M m_2}g \tag{3}$$
 
Last edited:
  • Like
Likes Dale
  • #11
What is not so comforting about arriving at this solution is my failure in applying Newtons Laws to solve this problem as I have tried in

Problem with 2 pulleys and 3 masses

Can anyone figure out what is wrong about that approach?
 
Last edited:
  • #13
Dale said:
post 10 looks good too
I found an error in this one! That means the system is consistent

erobz said:
$$ \ddot{l_2} = \frac{ 2m_1(m_2 - M) }{m_1M + m_1 m_2 + 2 M m_2}g \tag{3}$$
$$ \ddot{l_2} = \frac{ 2m_1(m_2 - M) }{m_1M + m_1 m_2 + \boldsymbol{4} M m_2}g \tag{3}$$
 
  • #14
Thanks for all the verification along the way @Dale.
 

FAQ: System of Masses - Atwood Machine

What is a System of Masses - Atwood Machine?

A System of Masses - Atwood Machine is a simple mechanical device used to demonstrate the principles of Newton's laws of motion and the concept of acceleration due to gravity. It consists of two masses connected by a string that passes over a pulley.

How does a System of Masses - Atwood Machine work?

The two masses in the Atwood Machine are connected by a string that passes over a pulley. The pulley is attached to a fixed point and allows the string to move freely. When one mass is heavier than the other, the heavier mass will accelerate downwards while the lighter mass accelerates upwards. This creates a net force on the system and causes it to move.

What are the main components of a System of Masses - Atwood Machine?

The main components of a System of Masses - Atwood Machine are two masses, a string, and a pulley. The masses can be any objects with measurable weight, the string should be lightweight and non-stretchable, and the pulley should be smooth and frictionless.

What is the purpose of using a System of Masses - Atwood Machine?

The purpose of using a System of Masses - Atwood Machine is to demonstrate the principles of Newton's laws of motion and the concept of acceleration due to gravity. It can also be used to calculate the acceleration of the system and to understand the relationship between mass, force, and acceleration.

How is a System of Masses - Atwood Machine related to real-life applications?

A System of Masses - Atwood Machine is related to real-life applications in various fields such as physics, engineering, and mechanics. It can be used to understand the motion of objects and the forces acting on them, which is essential in designing and building structures, machines, and vehicles. It is also used in experiments and demonstrations to study the effects of gravity on objects of different masses.

Back
Top