- #1
Big-Daddy
- 343
- 1
How do we systematically calculate the molar solubility of a substance with regards to its Ksp? In other words, where does the value of "molar solubility" fit into the equilibrium calculations?
This should build up so that I can understand how to systematically treat the common ion effect, among other equilibria, if necessary. For example, if I want to know what the molar solubility is of my salt when, if it dissolves, it will undergo hydrolysis of the anion, or complex formation, or both (so we would need to consider acid/base equilibria and Kf at the same time as Ksp), how do I set up the equilibrium expressions to solve to get my molar solubility? This would come from an understanding of how exactly to calculate "molar solubility" in relation to equilibria in general.
I suspect that a major step is to note that Ksp = the equilibrium concentrations of the two ions of the salt, to the power of their coefficients in the molecular formula respectively, multiplied together, ONLY when the molar solubility is actually reached - until then, their equilibrium concentrations will multiply to a lower value than the Ksp only. That still leaves me unclear as to exactly what "molar solubility" is and how we would go about calculating it in situations with many equilibria going around.
This should build up so that I can understand how to systematically treat the common ion effect, among other equilibria, if necessary. For example, if I want to know what the molar solubility is of my salt when, if it dissolves, it will undergo hydrolysis of the anion, or complex formation, or both (so we would need to consider acid/base equilibria and Kf at the same time as Ksp), how do I set up the equilibrium expressions to solve to get my molar solubility? This would come from an understanding of how exactly to calculate "molar solubility" in relation to equilibria in general.
I suspect that a major step is to note that Ksp = the equilibrium concentrations of the two ions of the salt, to the power of their coefficients in the molecular formula respectively, multiplied together, ONLY when the molar solubility is actually reached - until then, their equilibrium concentrations will multiply to a lower value than the Ksp only. That still leaves me unclear as to exactly what "molar solubility" is and how we would go about calculating it in situations with many equilibria going around.
Last edited: