- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{t.15.28}$
$\text{Find the volume of the region bounded above by the surface }\\$
$\text{$z=4-y^2$
and below by the rectangle
$R: 0 \ge x \ge 1 \quad 0\ge y \ge 2$.}$
$\begin{align*}\displaystyle
I&=\iint \limits_{R}4-y^2 \, dA&(1)\\
&=\int_{0}^{2}\int_{0}^{1}4-y^2 \, dxdy
=\int_{0}^{2}4-y^2 \, dy&(2)\\
&=\left[4y- \frac{y^3}{3} \right] \biggr|_0^2
=8-\frac{8}{3}=\frac{16}{3}&(3)
\end{align*}$
$\textit{ok I followed an example to do this
but didn't understand in (2) dropping the $_0^1$ limits}$
$\text{Find the volume of the region bounded above by the surface }\\$
$\text{$z=4-y^2$
and below by the rectangle
$R: 0 \ge x \ge 1 \quad 0\ge y \ge 2$.}$
$\begin{align*}\displaystyle
I&=\iint \limits_{R}4-y^2 \, dA&(1)\\
&=\int_{0}^{2}\int_{0}^{1}4-y^2 \, dxdy
=\int_{0}^{2}4-y^2 \, dy&(2)\\
&=\left[4y- \frac{y^3}{3} \right] \biggr|_0^2
=8-\frac{8}{3}=\frac{16}{3}&(3)
\end{align*}$
$\textit{ok I followed an example to do this
but didn't understand in (2) dropping the $_0^1$ limits}$