- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Say that we work in a language $L$.
A theory $T$ (i.e. a subject of the set of formulas) of $L$ admits elimination of quantifiers if any $L$-formula $\phi (x)$ is equivalent in $T$ to an existential formula.
Let $T$ be an $L$-theory.
Assume that any formula of the form $\exists x \ \ \psi (x, y)$, where $x$ is one variable, $y$ is a tuple of variables and $\psi$ is quantifier-free, is equivalent in $T$ to a quantifier-free formula.
Prove that $T$ admits elimination of quantifiers. I have done the following:
Any formula of $T$ is of the form $$Q_1 x_1 \dots Q_n x_n \ \ \phi (\overline{x}, \overline{y})$$ where $Q_i \in \{\forall, \exists \}$.
We change the order of the $Q_i$'s so that first we have all the $\forall$ and then all the $\exists$.
So we have $$\forall x_1 \dots \forall x_i \exists x_{i+1} \dots \exists x_n \ \ \phi (\overline{x}, \overline{y})$$
We know that $\exists x_n \ \ \phi (\overline{x}, \overline{y}) \leftrightarrow \phi_0 (\overline{x}, \overline{y})$.
So
$$\forall x_1 \dots \forall x_i \exists x_{i+1} \dots \exists x_{n-1} \ \ \phi (\overline{x}, \overline{y})$$
We do the same till we get $$\forall x_1 \dots \forall x_i \ \ \tilde{\phi}_0 (\overline{x}, \overline{y})$$
Since $$\neg \exists x \ \ \psi (x)\equiv \forall x \ \ \neg \psi (x) \\ \neg \forall x \ \ \psi (x)\equiv \exists x \ \ \neg \psi (x)$$ to prove that $\forall x_j \ \ \phi (\overline{x}, \overline{y})$ is quantifier-free, it suffices to prove that its negation is quantifier-free
So $$\neg \forall x_1 \dots \neg \forall x_i \ \ \tilde{\phi}_0 (\overline{x}, \overline{y})\leftrightarrow \exists x_1 \dots \exists x_i \ \ \neg \tilde{\phi}_0 (\overline{x}, \overline{y})$$
Now we do the same as before, $$\exists x_1 \dots \exists x_i \ \ \neg \tilde{\phi}_0 (\overline{x}, \overline{y})\leftrightarrow \exists x_1 \dots \exists x_{i-1} \ \ \neg \tilde{\phi}_0' (\overline{x}, \overline{y})$$
$$\exists x_1 \dots \exists x_{i-1} \ \ \neg \tilde{\phi}_0' (\overline{x}, \overline{y})\leftrightarrow \exists x_1 \dots \exists x_{i-2} \ \ \neg \tilde{\phi}_0'' (\overline{x}, \overline{y})$$
Until we get a quantifier-free formula.
So, we have that any formula of $T$ is equivalent to a quantifier-free formula.
Therefore, $T$ admits elimination of quantifiers.
Is everything correct? Could I improve something? (Wondering)
Say that we work in a language $L$.
A theory $T$ (i.e. a subject of the set of formulas) of $L$ admits elimination of quantifiers if any $L$-formula $\phi (x)$ is equivalent in $T$ to an existential formula.
Let $T$ be an $L$-theory.
Assume that any formula of the form $\exists x \ \ \psi (x, y)$, where $x$ is one variable, $y$ is a tuple of variables and $\psi$ is quantifier-free, is equivalent in $T$ to a quantifier-free formula.
Prove that $T$ admits elimination of quantifiers. I have done the following:
Any formula of $T$ is of the form $$Q_1 x_1 \dots Q_n x_n \ \ \phi (\overline{x}, \overline{y})$$ where $Q_i \in \{\forall, \exists \}$.
We change the order of the $Q_i$'s so that first we have all the $\forall$ and then all the $\exists$.
So we have $$\forall x_1 \dots \forall x_i \exists x_{i+1} \dots \exists x_n \ \ \phi (\overline{x}, \overline{y})$$
We know that $\exists x_n \ \ \phi (\overline{x}, \overline{y}) \leftrightarrow \phi_0 (\overline{x}, \overline{y})$.
So
$$\forall x_1 \dots \forall x_i \exists x_{i+1} \dots \exists x_{n-1} \ \ \phi (\overline{x}, \overline{y})$$
We do the same till we get $$\forall x_1 \dots \forall x_i \ \ \tilde{\phi}_0 (\overline{x}, \overline{y})$$
Since $$\neg \exists x \ \ \psi (x)\equiv \forall x \ \ \neg \psi (x) \\ \neg \forall x \ \ \psi (x)\equiv \exists x \ \ \neg \psi (x)$$ to prove that $\forall x_j \ \ \phi (\overline{x}, \overline{y})$ is quantifier-free, it suffices to prove that its negation is quantifier-free
So $$\neg \forall x_1 \dots \neg \forall x_i \ \ \tilde{\phi}_0 (\overline{x}, \overline{y})\leftrightarrow \exists x_1 \dots \exists x_i \ \ \neg \tilde{\phi}_0 (\overline{x}, \overline{y})$$
Now we do the same as before, $$\exists x_1 \dots \exists x_i \ \ \neg \tilde{\phi}_0 (\overline{x}, \overline{y})\leftrightarrow \exists x_1 \dots \exists x_{i-1} \ \ \neg \tilde{\phi}_0' (\overline{x}, \overline{y})$$
$$\exists x_1 \dots \exists x_{i-1} \ \ \neg \tilde{\phi}_0' (\overline{x}, \overline{y})\leftrightarrow \exists x_1 \dots \exists x_{i-2} \ \ \neg \tilde{\phi}_0'' (\overline{x}, \overline{y})$$
Until we get a quantifier-free formula.
So, we have that any formula of $T$ is equivalent to a quantifier-free formula.
Therefore, $T$ admits elimination of quantifiers.
Is everything correct? Could I improve something? (Wondering)
Last edited by a moderator: