- #1
solakis1
- 422
- 0
Let :
1)P one place operation
.........m is a constant......
2)K one place operation
let :
1) G two place predicate
2) H two place predicate
Let :
The following axioms or assumptions)
1)for all A { H(A,m)v H(m,A)v G(A,m)}
2)for all A { H(A,m)=> G[P(A),A]}
3)for all A {H(m,A) => G[P(A),K(A)]}
4)for all A {G[K(A),m] => G(A,m)}.
5)for all A,B,C { [G(A,B) and G(A,C)]=> G(B,C)}
Then formally prove :
for all A {G[P(A),m] => G(A,m)}
1)P one place operation
.........m is a constant......
2)K one place operation
let :
1) G two place predicate
2) H two place predicate
Let :
The following axioms or assumptions)
1)for all A { H(A,m)v H(m,A)v G(A,m)}
2)for all A { H(A,m)=> G[P(A),A]}
3)for all A {H(m,A) => G[P(A),K(A)]}
4)for all A {G[K(A),m] => G(A,m)}.
5)for all A,B,C { [G(A,B) and G(A,C)]=> G(B,C)}
Then formally prove :
for all A {G[P(A),m] => G(A,m)}