- #1
robertjordan
- 71
- 0
Homework Statement
If [itex]R=\mathbb{Q}[\sqrt{2}][/itex], then Frac(R)=[itex]\mathbb{R}[/itex]
Homework Equations
[itex]\mathbb{Q}[\sqrt{2}]=\{a+b\sqrt{2} | a,b\in{\mathbb{Q}}\}[/itex]
Frac(R) is the fraction field of R is basically [itex]\{\frac{a+b\sqrt{2}}{c+d\sqrt{2}} | a,b,c,d\in{\mathbb{Q}}\}[/itex].
The Attempt at a Solution
Back of the book says false...
I tried to show [itex]\pi\not\in{Frac(R)}[/itex] by assuming by way of contradiction that there existed [itex]a,b,c,d\in{\mathbb{Q}}[/itex] s.t. [itex]\frac{a+b\sqrt{2}}{c+d\sqrt{2}}=\pi[/itex].
That implies [itex]c\pi+d\pi\sqrt{2}=a+b\sqrt{2}[/itex] ... this led nowhere :(
Last edited: