- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{2214.t1.13}$
1000
$\textsf{solve the initial value problem}$
\begin{align*}\displaystyle
\frac{ds}{dt}&=12t(3t^2-1)^3 ,s(1)=3\\
I_{13}&=\int 12t(3t^2-t)^3 \, dt\\
u&=(3t^2-1) \therefore \frac{1}{6t}du=dt \\
&=2\int u^3 du\\
&=2\left[\frac{u^4}{4}\right]\\
\textit{Back Substitute U}&\\
&=2\left[\frac{(3t^2-1)^4}{4}\right]+C\\
\textit{Solve for C}&\\
s(1)&=\left[\frac{(3(1)^2-1)^4}{2}\right]+C=3\\
&=\left[\frac{16}{2}\right]+C=3\\
&=8+C=3 \therefore C=-5\\
\textit{Initial Value}&\\
s&=\color{red}{\frac{1}{2}(3t^2-1)^4-5}
\end{align*}ok took me 2 hours to do this and hope it is ok
I was curious if there is a way to right justify the text inside an align
also suggestions if any
much mahalo ahead
1000
$\textsf{solve the initial value problem}$
\begin{align*}\displaystyle
\frac{ds}{dt}&=12t(3t^2-1)^3 ,s(1)=3\\
I_{13}&=\int 12t(3t^2-t)^3 \, dt\\
u&=(3t^2-1) \therefore \frac{1}{6t}du=dt \\
&=2\int u^3 du\\
&=2\left[\frac{u^4}{4}\right]\\
\textit{Back Substitute U}&\\
&=2\left[\frac{(3t^2-1)^4}{4}\right]+C\\
\textit{Solve for C}&\\
s(1)&=\left[\frac{(3(1)^2-1)^4}{2}\right]+C=3\\
&=\left[\frac{16}{2}\right]+C=3\\
&=8+C=3 \therefore C=-5\\
\textit{Initial Value}&\\
s&=\color{red}{\frac{1}{2}(3t^2-1)^4-5}
\end{align*}ok took me 2 hours to do this and hope it is ok
I was curious if there is a way to right justify the text inside an align
also suggestions if any
much mahalo ahead
Last edited: