MHB T6.1.1 Find the volume of the solid

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Solid Volume
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{t6.1.1}$
$\text{The solid lies between planes perpendiaular to the}$
$\text{$x$-axis at $x=0$ and $x = 4$.}$
$\text{The cross-scctions perpendicular to the axis on the interval
$0 \le x \le 4$}$
$\text{are squrares whose diagonals run for the parabola $\displaystyle f_a(x)=-\sqrt{x}$
to $\displaystyle f_b(x)=\sqrt{x}$}$
$\text{Find the volume of the solid}$$\textit{the area of the square whose diagonal is from $-\sqrt{x}$ to $-\sqrt{x}$ is}$
\begin{align*}\displaystyle
A_{square}(x)&=[\sqrt{2x}]^2 \\
&=2x
\end{align*}

ok just want to see if the area of the square is ok before
\begin{align*}\displaystyle
I&=\int_{0}^{4} ? \,dx
\end{align*}

View attachment 7421
 

Attachments

  • t6.1.1.PNG
    t6.1.1.PNG
    2 KB · Views: 149
Physics news on Phys.org
karush said:
$\tiny{t6.1.1}$
$\text{The solid lies between planes perpendiaular to the}$
$\text{$x$-axis at $x=0$ and $x = 4$.}$
$\text{The cross-scctions perpendicular to the axis on the interval
$0 \le x \le 4$}$
$\text{are squrares whose diagonals run for the parabola $\displaystyle f_a(x)=-\sqrt{x}$
to $\displaystyle f_b(x)=\sqrt{x}$}$
$\text{Find the volume of the solid}$$\textit{the area of the square whose diagonal is from $-\sqrt{x}$ to $-\sqrt{x}$ is}$
\begin{align*}\displaystyle
A_{square}(x)&=[\sqrt{2x}]^2 \\
&=2x
\end{align*}

ok just want to see if the area of the square is ok before
\begin{align*}\displaystyle
I&=\int_{0}^{4} ? \,dx
\end{align*}

Hi karush,

Yes. Since the length of the diagonal of the square is $2\sqrt{x}$ if we take $y$ as the length of its side, by the Pythagorean theorem we have $y^2 + y^2=\left(2\sqrt{x}\right)^2\Rightarrow y^2=2x$. Therefore the area of the square is $2x$.
 
$\tiny{t6.1.1}$
$\text{The solid lies between planes perpendiaular to the}$
$\text{$x$-axis at $x=0$ and $x = 4$.}$
$\text{The cross-scctions perpendicular to the axis on the interval
$0 \le x \le 4$}$
$\text{are squrares whose diagonals run for the parabola $\displaystyle f_a(x)=-\sqrt{x}$
to $\displaystyle f_b(x)=\sqrt{x}$}$
$\text{Find the volume of the solid}$$\textit{the area of the square whose diagonal is from $-\sqrt{x}$ to $-\sqrt{x}$ is}$
\begin{align*}\displaystyle
A_{square}(x)&=[\sqrt{2x}]^2 \\
&=2x
\end{align*}
$\textit{so the Integral is:}$

$$\begin{align*}\displaystyle
V&=\int_{0}^{4} 2x \, dx\\
&=x^2\biggr|_0^4\\
&=16-0=\color{red}{16}
\end{align*} $$
 
karush said:
$\tiny{t6.1.1}$
$\text{The solid lies between planes perpendiaular to the}$
$\text{$x$-axis at $x=0$ and $x = 4$.}$
$\text{The cross-scctions perpendicular to the axis on the interval
$0 \le x \le 4$}$
$\text{are squrares whose diagonals run for the parabola $\displaystyle f_a(x)=-\sqrt{x}$
to $\displaystyle f_b(x)=\sqrt{x}$}$
$\text{Find the volume of the solid}$$\textit{the area of the square whose diagonal is from $-\sqrt{x}$ to $-\sqrt{x}$ is}$
\begin{align*}\displaystyle
A_{square}(x)&=[\sqrt{2x}]^2 \\
&=2x
\end{align*}
$\textit{so the Integral is:}$

$$\begin{align*}\displaystyle
V&=\int_{0}^{4} 2x \, dx\\
&=x^2\biggr|_0^4\\
&=16-0=\color{red}{16}
\end{align*} $$

Yes, since the volume of each square is given by $2x\,dx$ the volume is given by the integral $\int_0^4 2x\,dx$.
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...

Similar threads

Back
Top