- #1
patric44
- 308
- 40
- Homework Statement
- show that T_{0} - space iff the derived set of every singleton is a union of closed sets.
- Relevant Equations
- T_{0} - space iff {x}^{'} is a union of closed sets.
Hello everyone,
Concerning the separation axioms in topology. Our topology professor introduced the equivalent definition for a topological space to be a ##T_{o}-space## as:
$$
(X,\tau)\ is\ a\ T_{o}-space\ iff\ \forall\ x\ \in X,\ \{x\}^{\prime}\ is\ a\ union\ of\ closed\ sets.
$$
The direction ##\implies## follows from the result ##\bar{\{x\}}\neq\bar{\{y\}}## for every distinct elements in ##T_{o}-space##: Let ##z\in \{x\}^{\prime}\implies z\neq x\implies x\notin\bar{\{z\}}##, since
$$
{z}\subseteq{x}^{\prime}\subseteq\bar{\{x\}}\implies \bar{\{z\}}\subseteq\bar{\{x\}}.
$$
Then
$$
\bar{\{z\}}=\bar{\{z\}}-\{x\}\subseteq\bar{\{x\}}-\{x\}=\{x\}^{\prime},
$$
thus ##z\in\bar{\{z\}}\subseteq\{x\}^{\prime}##, i.e., ##\{x\}^{\prime}## can be written as a union of closed sets. Unfortunately, the other direction is not that clear. Will appreciate any suggestions.
Concerning the separation axioms in topology. Our topology professor introduced the equivalent definition for a topological space to be a ##T_{o}-space## as:
$$
(X,\tau)\ is\ a\ T_{o}-space\ iff\ \forall\ x\ \in X,\ \{x\}^{\prime}\ is\ a\ union\ of\ closed\ sets.
$$
The direction ##\implies## follows from the result ##\bar{\{x\}}\neq\bar{\{y\}}## for every distinct elements in ##T_{o}-space##: Let ##z\in \{x\}^{\prime}\implies z\neq x\implies x\notin\bar{\{z\}}##, since
$$
{z}\subseteq{x}^{\prime}\subseteq\bar{\{x\}}\implies \bar{\{z\}}\subseteq\bar{\{x\}}.
$$
Then
$$
\bar{\{z\}}=\bar{\{z\}}-\{x\}\subseteq\bar{\{x\}}-\{x\}=\{x\}^{\prime},
$$
thus ##z\in\bar{\{z\}}\subseteq\{x\}^{\prime}##, i.e., ##\{x\}^{\prime}## can be written as a union of closed sets. Unfortunately, the other direction is not that clear. Will appreciate any suggestions.
Last edited: