- #1
cbarker1
Gold Member
MHB
- 349
- 23
Use Logarithms to compute the following, correct to four- accuracy. (In find N from Log N, don't interpolate).26. $$(\log\left({0.007211}\right))^3$$
Let N=$$(\log\left({0.007211}\right))^3$$
Then $\log\left({(\log\left({0.007211}\right))^3}\right)$=$$\log\left({N}\right)
$\therefore$ $\log\left({N}\right)$=$3*\log\left({\log\left({.007211}\right)}\right)$;
Since
$\log\left({.007211}\right)=\log\left({{7.211}\E{-3}}\right)$$$\implies$$\log\left({7.211}\right)-3$
The Value of $\log\left({7.211}\right)=.85800$ by the table in the book.
The Final Value of $\log\left({.007211}\right)=7.85800-10$ because of the characteristic is -3 or 7-10.
Then, The value of $\log\left({7.85800-10}\right)$ or $\log\left({-3.85800}\right)$
What to do next?
Do I assume to be positive, then figure out the log? Or Using other log (7.85800-10)?
P.S. Final Solutions is -9.828
I figure out the solution:
7.85800-10=-2.14200
Ignoring the neg.
Log(2.14200)=.33082*3=.99246
N=-9.828
Let N=$$(\log\left({0.007211}\right))^3$$
Then $\log\left({(\log\left({0.007211}\right))^3}\right)$=$$\log\left({N}\right)
$\therefore$ $\log\left({N}\right)$=$3*\log\left({\log\left({.007211}\right)}\right)$;
Since
$\log\left({.007211}\right)=\log\left({{7.211}\E{-3}}\right)$$$\implies$$\log\left({7.211}\right)-3$
The Value of $\log\left({7.211}\right)=.85800$ by the table in the book.
The Final Value of $\log\left({.007211}\right)=7.85800-10$ because of the characteristic is -3 or 7-10.
Then, The value of $\log\left({7.85800-10}\right)$ or $\log\left({-3.85800}\right)$
What to do next?
Do I assume to be positive, then figure out the log? Or Using other log (7.85800-10)?
P.S. Final Solutions is -9.828
I figure out the solution:
7.85800-10=-2.14200
Ignoring the neg.
Log(2.14200)=.33082*3=.99246
N=-9.828
Last edited: