- #1
SU403RUNFAST
- 38
- 0
Homework Statement
I have the total energy of a hydrogen atom E and need to take the average. The uncertainty in deltax=r so the uncertainty in deltap=hbar/2r The average values of x^2 and p^2 can be identified with the squares of the corresponding uncertainties, and the constant value of E is by definition the same as its average (what does this mean, <E^2>=(E)^2?), take the average of E and use it to estimate the minimum value of E and the minimizing value of deltap, and the corresponding value of r.
Homework Equations
<x^2>=(deltax)^2
<p^2>=(deltap)^2
<E>.=________________
E=K+U
K=(p^2)/2m
U=-(ke^2)/r
The Attempt at a Solution
I do not know how to take the average, i know that when i take the average of <E> the potential energy term U has an r at the bottom, and that <1/r> is not the same as 1/<r>, so I believe i must replace the r first. i know that deltar=(hbar)/(2deltap) but I am not sure what taking the average is doing to the equation. Is it changing the variables in any way? I originally took the derivative of E with respect to r and set it equal to zero, giving me r=(hbar^2)/(me^2), this is bohr's radius=.5 angstroms, and E=-13.6 eV. The kinetic energy can be rewritten as K=(hbar^2)/(2mr^2). I tried latexing the preview showed all the writing though sorry.