- #1
badgers14
- 4
- 0
Can anyone help me with this problem??
Let M be a surface in R^3 oriented by a unit normal vector field
U=g1U1+g2U2+g3U3
Then the Gauss map G:M[tex]\rightarrow[/tex][tex]\Sigma[/tex] of M sends each point p of M to the point (g1(p),g2(p),g3(p)) of the unit sphere [tex]\Sigma[/tex].
Show that the shape operator of M is (minus) the tangent map of its Gauss Map: If S and G:M[tex]\rightarrow[/tex][tex]\Sigma[/tex] are both derived from U, then S(v) and -G*(v) are parallel for every tangent vector v to M.
Any help is appreciated. Thanks
Let M be a surface in R^3 oriented by a unit normal vector field
U=g1U1+g2U2+g3U3
Then the Gauss map G:M[tex]\rightarrow[/tex][tex]\Sigma[/tex] of M sends each point p of M to the point (g1(p),g2(p),g3(p)) of the unit sphere [tex]\Sigma[/tex].
Show that the shape operator of M is (minus) the tangent map of its Gauss Map: If S and G:M[tex]\rightarrow[/tex][tex]\Sigma[/tex] are both derived from U, then S(v) and -G*(v) are parallel for every tangent vector v to M.
Any help is appreciated. Thanks