- #1
Amad27
- 412
- 1
In a polar function,
$r = 1 - 2\cos(t)$ what are the tangents at the pole, considering $t$ an angle?
I am not sure what the pole is BUT!
$x = \cos(t) - 2\cos^2(t)$
$y = \sin(t) - \sin(2t)$ $dx/dt = -\sin(t) + 4\cos(t)\sin(t)$
$dy/dt = \cos(t) - 2\cos(2t)$
$dy/dx = \frac{\cos(t) - 2\cos(2t)}{-\sin(t) + 4\cos(t)\sin(t)}$
$r = 1 - 2\cos(t)$ what are the tangents at the pole, considering $t$ an angle?
I am not sure what the pole is BUT!
$x = \cos(t) - 2\cos^2(t)$
$y = \sin(t) - \sin(2t)$ $dx/dt = -\sin(t) + 4\cos(t)\sin(t)$
$dy/dt = \cos(t) - 2\cos(2t)$
$dy/dx = \frac{\cos(t) - 2\cos(2t)}{-\sin(t) + 4\cos(t)\sin(t)}$