- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{206.11.1.16-T}$
$\textsf{Find the nth-order Taylor polynomials
centered at 0, for $n=0, 1, 2.$}\\$
$$\displaystyle f(x)=e^{-4x}$$
$\textsf{using}\\$
$$P_n\left(x\right)
\approx\sum\limits_{k=0}^{n}\frac{f^{(k)}\left(a\right)}{k!}x^k$$
$\textsf{n=0}\\$
\begin{align}
f^0(x)&\approx e^{-4x}\therefore f^0(0)\approx1 \\
P_0\left(x\right)&\approx\frac{1}{0!}x^{0}\approx 1
\end{align}
$\textsf{n=1}\\$
\begin{align}
f^1(x)&\approx-4e^{-4x}\therefore f^1(0)\approx -4 \\
P_1 f(x)&\approx \frac{1}{0!}x^{0}
+\frac{-4}{1!}x^{1}
\approx 1-4x
\end{align}
$\textsf{n=2}\\$
\begin{align}
f^2 (x)&= 16e^{-4x}\therefore f^2 (0)=16\\
P_2 f(x)&\approx \frac{1}{0!} x^{0}
+\frac{-4}{1!}x^{1}+\frac{16}{2!}x^{2}
\approx 1- 4x+8x^{2}
\end{align}
hopefully
not too hard kinda subtle tho
$\textsf{Find the nth-order Taylor polynomials
centered at 0, for $n=0, 1, 2.$}\\$
$$\displaystyle f(x)=e^{-4x}$$
$\textsf{using}\\$
$$P_n\left(x\right)
\approx\sum\limits_{k=0}^{n}\frac{f^{(k)}\left(a\right)}{k!}x^k$$
$\textsf{n=0}\\$
\begin{align}
f^0(x)&\approx e^{-4x}\therefore f^0(0)\approx1 \\
P_0\left(x\right)&\approx\frac{1}{0!}x^{0}\approx 1
\end{align}
$\textsf{n=1}\\$
\begin{align}
f^1(x)&\approx-4e^{-4x}\therefore f^1(0)\approx -4 \\
P_1 f(x)&\approx \frac{1}{0!}x^{0}
+\frac{-4}{1!}x^{1}
\approx 1-4x
\end{align}
$\textsf{n=2}\\$
\begin{align}
f^2 (x)&= 16e^{-4x}\therefore f^2 (0)=16\\
P_2 f(x)&\approx \frac{1}{0!} x^{0}
+\frac{-4}{1!}x^{1}+\frac{16}{2!}x^{2}
\approx 1- 4x+8x^{2}
\end{align}
hopefully
not too hard kinda subtle tho